College Physics I: 1511 Mechanics & Thermodynamics

Professor Jasper Halekas Van Allen Lecture Room 1 MWF 8:30-9:20 Lecture

Exam 2 Scores

Combined Exam Scores

11.

Very Rough Grade Distribution (Based Only on Exam Scores)

Announcements I

- Students with valid excuses for missing the exam are taking makeups Tuesday (with a different test)
 - If anyone missed the exam and has not contacted me with a valid excuse, please be aware that Tuesday is the *last* possible date for you to take the exam
- I will post solutions to the exam after Tuesday
 - I will also be happy to discuss the exam after Tuesday
 - You can pick up your exam if you want after Tuesday

Announcements II

- Labs and homeworks as usual this week
 - Only three more labs!
 - Only four more homeworks!

Announcements III

Definition: Temperature

- Common sense:
 - A measure of how "hot" or "cold" something is
- Scientific:
 - Temperature is a measurement of the average kinetic energy of the atoms or molecules in an object or system.

Temperature at the Microscopic Level

Cool gas, fewer and less energetic collisions

Hot gas, more and more energetic collision

Temperature Scales

Celsius & Fahrenheit

°F = (°C x 9 / 5) + 32

Kelvin Temperature Scale

Absolute Zero

Absolute Gas Temp. Scale PV = nRT pressure gas 1

Absolute Zero

- Absolute zero means zero temperature
- Zero temperature (properly expressed in Kelvin) means zero kinetic energy for the molecules in a substance
- This means there is no motion everything is "frozen solid"

Phases of Matter

Everywhere this says "definite volume" it should say "almost definite volume"

Thermal Expansion/Contraction

- Almost all materials (solids, liquids, and gases) expand at least a little bit when heated, and contract when cooled
- Notable exceptions occur when materials change phases
 - e.g. When water cools and freezes to from a solid (ice), it actually expands

Linear Thermal Expansion

Thermal Expansion Coefficients

Substance	Coefficient of linear thermal expansion, $\alpha (\times 10^{-6} / C)$	Substance	Coefficient of linear thermal expansion, $\alpha (\times 10^{-6} / {}^{0} C)$
Aluminum	25.0	Nickel	12.8
Brass	18.9	Silver	18.8
Copper	16.5	Stee1	13.2
Glass (common)	8.5	Tin	20
Iron	11.7	Zinc	39.7
Lead	29.3	Ice	51

Don't use these values in homework problems – only use values given in book!

- Imagine you make a flat (at room temperature) two-sided strip with metals with different thermal expansion coefficients. What happens when you heat it?
- A. Nothing
- B. It bends towards the steel
- C. It bends towards the copper

- Imagine you make a flat (at room temperature) two-sided strip with metals with different thermal expansion coefficients. What happens when you heat it?
- A. Nothing
- B. It bends towards the steel
- C. It bends towards the copper

- Imagine you make a flat (at room temperature) two-sided strip with metals with different thermal expansion coefficients. What happens when you *cool* it?
- A. Nothing
- B. It bends towards the steel
- C. It bends towards the copper

- Imagine you make a flat (at room temperature) two-sided strip with metals with different thermal expansion coefficients. What happens when you *cool* it?
- A. Nothing
- B. It bends towards the steel
- C. It bends towards the copper

Bimetallic Switch

- A square metal plate with edge length L_o (area A = L_o^2) is heated so that it expands and its new edge length is 1.01 L_o . What is its new area?
- A: (1.01) L₀²
- B: Less than (1.01) L₀²
- C: More than (1.01) L_0^2

• A square metal plate with edge length L_o (area A = L_o^2) is heated so that it expands and its new edge length is 1.01 L_o . What is its new area?

Answer: The new area is $(1.01 L_0)^2 = 1.02 L_0^2$. (1.01)² = (1+0.01)(1.01) = 1.01 + (0.01)(1.01) \cong 1.01 + 0.01 = 1.02

Binomial Expansion and Thermal Expansion

•
$$(1+x)^2 = 1 + 2x + x^2 \sim 1 + 2x$$
 (for x <<1)

- Therefore area expansion has a coefficient twice that of linear expansion
- Similarly:
 - (1+x)³ ~ 1 + 3x (For x <<1)</p>
 - Therefore volume expansion has a coefficient three times that of linear expansion

- Imagine you take a square sheet of metal, cut out the center, and then heat. What happens to the size of the hole?
- A. Stays the same
- B. Gets bigger
- C. Gets smaller

- Imagine you take a square sheet of metal, cut out the center, and then heat. What happens to the size of the hole?
- A. Stays the sameB. Gets biggerC. Gets smaller

Thermal Expansion

Volume Thermal Expansion

Thermal Expansion Coefficients

TABLE 13–1 Coefficients of Expansion, near 20°C				
Material	Coefficient of Linear Expansion, α (C°) ⁻¹	Coefficient of Volume Expansion, β (C°) ⁻¹		
Solids				
Aluminum	$25 imes 10^{-6}$	$75 imes 10^{-6}$		
Brass	19×10^{-6}	$56 imes 10^{-6}$		
Copper	17×10^{-6}	$50 imes 10^{-6}$		
Gold	$14 imes 10^{-6}$	$42 imes 10^{-6}$		
Iron or steel	12×10^{-6}	$35 imes 10^{-6}$		
Lead	$29 imes 10^{-6}$	$87 imes 10^{-6}$		
Glass (Pyrex [®])	$3 imes 10^{-6}$	$9 imes 10^{-6}$		
Glass (ordinary)	$9 imes 10^{-6}$	$27 imes 10^{-6}$		
Quartz	$0.4 imes10^{-6}$	$1 imes 10^{-6}$		
Concrete and brick	pprox 12 $ imes$ 10 ⁻⁶	$pprox 36 imes 10^{-6}$		
Marble	$1.4 - 3.5 \times 10^{-6}$	$4 - 10 \times 10^{-6}$		
Liquids				
Gasoline		950×10^{-6}		
Mercury		$180 imes 10^{-6}$		
Ethyl alcohol		1100×10^{-6}		
Glycerin		$500 imes 10^{-6}$		
Water		$210 imes 10^{-6}$		
Gases				
Air (and most other gases		3400×10^{-6}		

Don't use these values in homework problems – only use values given in book!