College Physics I: 1511 Mechanics \& Thermodynamics

Professor Jasper Halekas
Van Allen Lecture Room 1
MWF 8:30-9:20 Lecture

Ideal Gas Law (Form 1)

Ideal Gas Law (Form 2)

Special Cases of Ideal Gas Law

Avogadro's Law (Isobaric, Isothermal)

$$
\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}
$$

$V_{1} V_{2}$ are Volumes of gas
$\mathrm{n}_{1} \mathrm{n}_{2}$ are amount of gas

At the same temperature and pressure, balloons of equal volume have equal numbers of molecules, regardless of which gas they contain.

Charles' Law (Isobaric Gas)

$$
V_{i} / T_{i}=V_{f} / T_{f}
$$

Boyle's Law (Isothermal Gas)

$$
\text { Boyle's Law: } P_{1} \mathbf{V}_{1}=P_{2} \mathbf{V}_{2}
$$

Decreasing volume increases collisions and increases pressure.

Gas Exerts a Force (Pressure) Through Collisions

Change in momentum on left wall

$$
\Delta(m v)=m v_{x}-\left(-m v_{x}\right)=2 m v_{x}
$$

Time between collisions on left wall

$$
\Delta t=\frac{2 l}{v_{x}}
$$

$$
\left.\mathrm{F} \Delta \mathrm{t}=\Delta \mathrm{p}=>\langle\mathrm{F}\rangle=\left\langle\mathrm{mv}_{\mathrm{x}}^{2} / \mathrm{L}\right\rangle=<1 / 3 \mathrm{mv}^{2} / \mathrm{L}\right\rangle
$$

$$
\left.\left.P=F / A=N<F>/ A=N 1 / 3 m<v^{2}\right\rangle / L 3=N 2 / 3<1 / 2 \mathrm{mv}^{2}\right\rangle / V
$$

$$
\begin{aligned}
& \Delta \rho=F \Delta t \\
& \Delta \rho_{x}=2 m v_{x} \\
& \Delta t=2 L / v_{x} \\
& F_{x}=\Delta \rho x / \Delta t=\frac{2 m v_{x}}{2 L / v x}=\frac{m v_{x}^{2}}{L} \\
&\left\langle v^{2}\right\rangle=\left\langle v_{x}^{2}\right\rangle+\left\langle v_{y}^{2}\right\rangle+\left\langle v_{x}^{2}\right\rangle \\
& \Rightarrow\left\langle v_{x}^{2}\right\rangle=\left\langle v^{2}\right\rangle / 3 \\
&\langle F\rangle=\left\langle\frac{\left.m v_{x}^{2}\right\rangle}{L}\right\rangle=\left\langle\frac{m v^{2}}{3 L}\right\rangle \\
& \rho=N\langle F\rangle / A=\frac{N\left\langle m v^{2}\right\rangle}{3 L \cdot L^{2}} \\
&=\frac{N}{L^{3}} \cdot \frac{1}{3} \cdot 2 \cdot\left\langle 1_{2} m v^{2}\right\rangle \\
&=\frac{N}{V} \cdot \frac{2}{3} \cdot\left\langle 1 / 2 m v^{2}\right\rangle \\
&=2 / 3 N /\langle K E\rangle
\end{aligned}
$$

Ideal Gas Law and Kinetic Energy

- Macroscopic: PV = NkT
- Kinetic: $\mathrm{PV}=\mathrm{N}\left(2 / 3<1 / 2 \mathrm{mv}^{2}>\right)=\mathrm{N}(2 / 3<K E>)$
- $\langle\mathrm{KE}\rangle=3 / 2 \mathrm{kT}$
- There is a direct relationship between the macroscopic quantity T and the average kinetic energy of the individual gas particles

Kinetic View of Temperature

Small Scale

$$
\begin{gathered}
m=\text { mass } \quad v=\text { velocity } \\
e=k i n e t i c \text { energy }
\end{gathered}
$$

$$
\left[\frac{1}{2} m v^{2}\right]_{\text {average }}=\frac{3}{2} \mathrm{kT}
$$

defines the kinetic temperature
$\mathrm{k}=$ Boltzmann constant

Temperature is a measure of the average
kinetic energy of translation of the gas molecules.

Concept Check

- Two sealed containers A and B are at the same temperature and each contain the same number of moles of an ideal monatomic gas. Container A is twice as big as container B . Which one of the following statements concerning these containers is true?
A. The average (RMS) speed of gas atoms is greater in B
B. The frequency of collisions of the atoms with the walls of container B are greater than that for container A
C. The kinetic energy of the gas atoms is greater in B
D. The pressure within container B is less than that in A

Concept Check

- Two sealed containers A and B are at the same temperature and each contain the same number of moles of an ideal monatomic gas. Container A is twice as big as container B . Which one of the following statements concerning these containers is true?
A. The average (RMS) speed of gas atoms is greater in B
B. The frequency of collisions of the atoms with the walls of container B are greater than that for container A
C. The kinetic energy of the gas atoms is greater in B
D. The pressure within container B is less than that in A

$$
\begin{aligned}
& V_{A}=2 V_{B} \\
& T_{A}=T_{B}=T \\
& n_{A}=n_{B}=n \\
& \rho_{A}-V_{A}=n R T \\
& \rho_{B}-V_{B}=n R T \\
& \rho_{A} V_{A}=\rho_{B} V_{B} \\
& \rho_{B} / \rho_{A}=V_{A} / V_{B}=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { T } \quad \text { constant } \\
& \Rightarrow \quad\langle k E\rangle \text { constant } \\
& \Rightarrow \quad\left\langle 1 / 2 m v^{2}\right\rangle \text { constant } \\
& \Rightarrow \quad\left\langle v^{2}\right\rangle \text { constant } \\
& \Rightarrow \quad v_{r m s}=\sqrt{\left\langle v^{2}\right\rangle}=\text { constant }
\end{aligned}
$$

Kinetic View of Pressure

(a)

(b)

(c)

Thermal Equilibrium (Zeroth Law of Thermodynamics)

Object \# 1 (Thermometer)

Object \#2

When two objects are separately in thermodynamic equilibrium with a third object, they are in equilibrium with each other.
Objects in thermodynamic equilibrium have the same temperature.

Heat

WHAT IS HEAT?

Energy Transfer Mechanisms

Heat and Temperature

- Adding heat changes the temperature of an substance (usually)
- But, not all heat necessarily goes into changing temperature
- Heat can also do work, or can change the phase or other properties of a substance

Internal Energy of a Gas

- Since $<K E>=3 / 2 \mathrm{kT}$, it is tempting to state that the total internal energy U of a gas is 3/2 NkT
- This is true for a monatomic ideal gas
- Total internal energy $\mathrm{U}=3 / 2 \mathrm{NkT}=3 / 2 \mathrm{nRT}$ for a monatomic ideal gas

Types of Gas

Forms of the Elements

- A monatomic element consists of a single atom.
- A diatomic element exists as a molecule made up of two atoms.
- A polyatomic element exists as a molecule made up of three or more atoms.

Internal Energy of Diatomic and Higher Gases

$$
\begin{aligned}
& E=K E+P E \\
& E=K E_{\text {rot }}+K E_{\text {trans }}+P E_{\text {elastic }}
\end{aligned}
$$

Monatomic: only translational degrees of freedom.

Diatomic: translational, rotational, and vibrational degrees of freedom.

Internal Energy

Systems with the same temperature

Translational kinetic energy
Vibrational and rotational kinetic energyPotential energy from intermolecular forces

Adding Heat Changes Temperature

Specific Heat Capacity

- Specific Heat Capacity is the amount of heat per unit mass (kg) of a substance to change its temperature by one degree Celsius.

$$
Q=c m \Delta T
$$

$Q=$ heat added (removed)
$\mathbf{c}=$ specific heat capacity
$\mathbf{m}=$ mass
$\Delta \mathrm{T}=$ temperature change

$\mathrm{c}=4,186 \mathrm{I} / \mathrm{kg} / \mathrm{C}$
for water at
$T=4 \mathrm{C}$

Work and Energy

Work Kinetic Energy Theorem

$$
\begin{aligned}
& W_{\text {net }}=\Delta K E \\
& W_{\text {net }}=1 / 2 m v_{f}^{2}-1 / 2 m v_{0}^{2}
\end{aligned}
$$

The $\mathrm{W}_{\text {net }}$ in the work-energy theorem is the work done on/to a moving object.

The work done by the object would be the negative of this.

First Law of Thermodynamics

The change in internal energy of a system is equal to the heat added to the system minus the work done by the system.

Concept Check

- When a solid object is heated, its internal energy (and temperature) changes. Its volume also changes, and this volume change can be used to do work. Which do you think is bigger?
A. The amount of heat that goes into internal energy
B. The amount of heat that goes into doing work
C. The two are equal

Concept Check

- When a solid object is heated, its internal energy (and temperature) changes. Its volume also changes, and this volume change can be used to do work. Which do you think is bigger?
A. The amount of heat that goes into internal energy
B. The amount of heat that goes into doing work
C. The two are equal

Example Problem

- Liquid water is heated in an open pan where the air pressure is one atmosphere.
Determine the ratio of the work done by the water (on the surrounding atmosphere) to the heat transferred to the water.
- Mass density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
- Specific heat capacity c $=4200 \mathrm{~J} /(\mathrm{kg} \mathrm{K})$
- Coefficient of volume expansion $\beta=2 \times 10^{-4}$
- Atmospheric pressure $=10^{5} \mathrm{~Pa}$

$$
\begin{gathered}
Q=m<\Delta T \Rightarrow \Delta T=Q / m c \\
\Delta V=\beta \Delta T V
\end{gathered}
$$

$$
\begin{aligned}
& V=A \cdot h \\
& \Delta V=A \cdot \Delta h
\end{aligned}
$$

$$
\begin{aligned}
W & =F \Delta h \\
& =P A \Delta h \\
& =P \Delta V \\
& =P(\beta \Delta T V) \\
& =\rho \cdot\left(\beta \cdot \frac{Q}{m c} \cdot V\right) \\
& =P \cdot \beta \cdot Q / c \cdot V / m \\
& =P-\beta \cdot Q / c \cdot 1 / \rho \\
& =10^{5} \cdot 2 \times 10^{-4} \cdot 1 / 4200-1 / 1000 \cdot Q \\
& \sim 5 \times 10^{-6} \cdot Q
\end{aligned}
$$

$$
\begin{aligned}
\Delta U & =Q-W \\
& \sim Q
\end{aligned}
$$

- Most heat goes to internal energy for - similar for fluids
- Not so for gas!

First Law Restated

THE FIRST LAW OF THERMODYNAMICS

- The first law of thermodynamics (the conservation of energy principle) provides a basic to study the relationships among various forms of energy and energy interactions.
- The first law states that energy can be neither created nor destroyed during a process; it can only change forms.

Energy cannot be created or destroyed; it can only change forms.

The increase in the energy of a potato in an oven is equal to the amount of heat transferred to it.

Happy Thanksgiving!

- See you all again on Monday 11/28!

