College Physics I: 1511 Mechanics \& Thermodynamics

Professor Jasper Halekas
Van Allen Lecture Room 1
MWF 8:30-9:20 Lecture

Announcements

- Welcome back!
- Second to last HW due Thursday
- Last lab this week

First Law of Thermodynamics

The change in internal energy of a system is equal to the heat added to the system minus the work done by the system.

First Law Bookkeeping

Energy Inputs and Outputs

How much does the internal energy of the system change?

First Law:
$\Delta U=\mathbf{Q}_{\text {added }}-W_{\text {by }}$
(normal way to write it)
Work done $W_{\text {on }}=-W_{\text {by }}$ by system $\quad Q_{\text {lost }}=-O_{\text {added }}$

PV Diagrams

Work Done by Isobaric Gas

$$
W_{\text {out }}=F d=P A d=P \Delta V
$$

$$
\Delta V=V_{f}-V_{i}
$$

$$
\begin{aligned}
W=F d & =P A d \\
& =P \Delta V
\end{aligned}
$$

Concept Check

A gas is in a container with a piston lid and is taken from thermodynamic state, A , to a new thermo-dynamic state, B , shown on the P-V diagram below. The work done by the gas is:

Concept Check

A gas is in a container with a piston lid and is taken from thermodynamic state, A , to a new thermo-dynamic state, B , shown on the P-V diagram below. The work done by the gas is:

Heat Transferred to/from Isobaric

Gas

- $\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}=\mathrm{Q}-\mathrm{P} \Delta \mathrm{V} \Rightarrow \mathrm{Q}=\Delta \mathrm{U}+\mathrm{P} \Delta \mathrm{V}$
- From ideal gas law $P \Delta V=\Delta(n R T)$
- For constant n, $\mathrm{P} \Delta \mathrm{V}=\mathrm{nR} \Delta \mathrm{T}$
- For monatomic gas $\Delta U=\Delta(3 / 2 n R T)$
- For constant n, $\Delta U=3 / 2 n R \Delta T$
- $\mathrm{Q}=\mathrm{nR} \Delta \mathrm{T}+3 / 2 \mathrm{nR} \Delta \mathrm{T}=5 / 2 \mathrm{nR} \Delta \mathrm{T}$
- (monatomic, constant n)

Isabaric

$$
\begin{aligned}
\Delta U & =Q-W \\
& =Q-P \Delta V \\
\Rightarrow Q & =\Delta U+\rho \Delta V \\
\rho V & =n R T \\
\Rightarrow \rho \Delta V & =\Delta(n R T) \\
& =n R \Delta T \text { for const. n } \\
\Delta U & =\Delta(3 / 2 N n T) \\
& =\Delta(3 / 2 n R T) \\
& \text { for manatomic gas }
\end{aligned}
$$

$$
\begin{aligned}
Q & =n R \Delta T+3 / 2 n R \Delta T \\
& =5 / 2 n R \Delta T
\end{aligned}
$$

Temperature \& Volume for Isobaric Gas

- $\mathrm{PV}=\mathrm{nRT}$
- $V=n R T / P$
- If heat is added, temperature goes up, volume goes up, and work is done by gas
- If heat is extracted, temperature goes down, volume goes down, and work is done on gas
- You can produce heat by compressing the gas!

Work Done by Isochoric Gas

- Isochoric = Constant Volume
- No movement means no work.
- (this does not mean there is no heat Q)

Heat Transferred to/from Isochoric

Gas

- $\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}=\mathrm{O}$ (since $\mathrm{W}=0$)
- For monatomic gas $\Delta U=\Delta(3 / 2 n R T)$
- For constant $\mathrm{n}, \mathrm{Q}=\Delta \mathrm{U}=3 / 2 \mathrm{nR} \Delta \mathrm{T}=3 / 2 \mathrm{Nk} \Delta \mathrm{T}$
- This just corresponds to the total change in kinetic energy, since the average kinetic energy per atom is $3 / 2 \mathrm{kT}$

Isachoric

$$
\begin{aligned}
\Delta u & =Q-W \\
& =Q \quad(W=0) \\
\Delta u & =\Delta(3 / 2 n R T) \\
& \text { for monatimic }
\end{aligned}
$$

If n constant:

$$
Q=\Delta U=3 / 2 n R \Delta T
$$

Temperature \& Pressure for Isochoric Gas

- $\mathrm{PV}=\mathrm{nRT}$
- $P=n R T / V$
- If heat is added, temperature goes up, and pressure goes up
- If heat is extracted, temperature goes down, and pressure goes down

Ideal Gas Processes

Process	$\boldsymbol{\Delta U}$	\mathbf{Q}	\mathbf{W}
Constant Volume (Isochoric)	$3 / 2 \mathrm{nR} \Delta \mathrm{T}$ (monatomic)	$3 / 2 \mathrm{nR} \Delta \mathrm{T}$ (monatomic)	o
Constant Pressure (Isobaric)	$3 / 2 \mathrm{nR} \Delta \mathrm{T}$ (monatomic)	$5 / 2 \mathrm{nR} \Delta \mathrm{T}$ (monatomic)	$\mathrm{P} \Delta \mathrm{V}=\mathrm{nR} \Delta \mathrm{T}$

Work and Heat: Isobaric vs. Isochoric

- Isobaric (constant n, P)
- Heat added $\mathrm{Q}=5 / 2 \mathrm{nR} \Delta \mathrm{T}$ (monatomic)
- Work done as gas expands (volume increases)
- Isochoric (constant n, V)
- Heat added $\mathrm{Q}=3 / 2 \mathrm{nR} \Delta \mathrm{T}$ (monatomic)
- No work done (volume constant)
- More heat required to change temperature of isobaric gas since some of the heat goes to work

Isobaric

$$
Q_{p}=S / 2 n R \Delta T
$$

$$
\text { Isacharic } \quad Q_{V}=3 / 2 n R \Delta T
$$

specific heat

$$
Q=m c \Delta T
$$

rewrite $Q=n C \Delta T$

$$
\begin{aligned}
C & =\text { malar heat capacity } \\
& \left.=J_{\text {mile }}{ }^{\circ} C\right) \\
C_{\rho} & =Q_{\rho} /(n \Delta T) \\
& =5 / 2 R \\
C_{V} & =Q_{V} /(n \Delta T) \\
& =3 / 2 R
\end{aligned}
$$

Specific Heat Capacity

- For a solid $\mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$
- For an ideal gas we can write $\mathrm{Q}=\mathrm{nC} \Delta \mathrm{T}$ in terms of a molar heat capacity
- C = $\mathrm{Q} /(\mathrm{n} \Delta \mathrm{T})$
- Units of $\mathrm{C}=[\mathrm{J}] /\left([\mathrm{mole}]\left[{ }^{\circ} \mathrm{C}\right]\right)$
- For a monatomic gas, these are:
- $C_{P}=Q_{\text {isobaric }} /(n \Delta T)=5 / 2 R$
- $C_{V}=Q_{\text {isochoric }} /(n \Delta T)=3 / 2 R$

Concept Check

- What is the total work done along paths a and b?
A. $W_{a}=p_{0} V_{o}, W_{b}=p_{o} V_{o}$
B. $W_{a}=2 p_{o} V_{o}, W_{b}=2 p_{o} V_{o}$
C. $W_{a}=2 p_{o} V_{o}, W_{b}=p_{o} V_{o}$
D. $\mathrm{W}_{\mathrm{a}}=\mathrm{p}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}, \mathrm{W}_{\mathrm{b}}=2 \mathrm{p}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}$

Concept Check

- What is the total work done along paths a and b?

$$
\begin{array}{r}
\text { Work only along } \\
\text { hovitantal legs } \\
\begin{array}{l}
w=0 \\
w=\rho_{0}\left(2 \rho_{0}\left(2 v_{0}-v_{0}\right)\right. \\
\left.w_{0}-v_{0}\right)
\end{array}=2 \rho_{0} v_{0}
\end{array}
$$

General Rule for Work Done by a Gas: Compute Area on P-V Diagram

Increase in volume => positive work done by gas

Decrease in volume => negative work done by gas (positive work done on gas)
(b)

Concept Check

- What is the change in total internal energy along paths a and b ?
A. $\Delta U_{a}=-p_{0} V_{o}, \Delta U_{b}=-p_{0} V_{0}$
B. $\Delta \mathrm{U}_{\mathrm{a}}=-2 \mathrm{p}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}, \Delta \mathrm{U}_{\mathrm{b}}=-\mathrm{p}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}$
C. $\Delta \mathrm{U}_{\mathrm{a}}=\mathrm{o}, \Delta \mathrm{U}_{\mathrm{b}}=0$
D. $\Delta \mathrm{U}_{\mathrm{a}}=2 \mathrm{p}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}, \Delta \mathrm{U}_{\mathrm{b}}=\mathrm{p}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}$

Concept Check

- What is the change in total internal energy along paths a and b ?

$$
\begin{aligned}
& \text { A. } \Delta \mathrm{U}_{\mathrm{a}}=-\mathrm{p}_{\mathrm{o}} \mathrm{~V}_{\mathrm{o}} \Delta \mathrm{U}_{\mathrm{b}}=-\mathrm{p}_{\mathrm{o}} \mathrm{~V}_{\mathrm{o}} \\
& \text { B. } \Delta \mathrm{U}_{\mathrm{a}}=-2 \mathrm{p}_{0} \mathrm{~V}_{\mathrm{o}} \Delta \mathrm{U}_{\mathrm{b}}=\mathrm{p}_{\mathrm{o}} \mathrm{~V}_{\mathrm{o}} \\
& \text { C. } \Delta \mathrm{U}_{\mathrm{a}}=0, \Delta \mathrm{U}_{\mathrm{b}}=0 \\
& \text { D. } \Delta \mathrm{U}_{\mathrm{a}}=2 \mathrm{p}_{\mathrm{o}} \mathrm{~V}_{\mathrm{o}} \Delta \mathrm{U}_{\mathrm{b}}=\mathrm{p}_{\mathrm{o}} \mathrm{~V}_{\mathrm{o}}
\end{aligned}
$$

U proportional to T

$$
\begin{aligned}
\text { but } & =\rho V / n R \\
T_{1} & =2 \rho \cdot V_{0} /(n R) \\
T_{2} & =\rho_{0} \cdot 2 V_{0} /(n R)=T_{1} \\
\text { s. } \Delta u_{a} & =0 \\
\Delta u_{b} & =0
\end{aligned}
$$

Internal Energy and State Variables

- U proportional to temperature for ideal gas
- For monatomic gas U = 3/2 nRT
- But, by the ideal gas law, PV = nRT
- So, for constant n, U is proportional to PV
- For monatomic gas, U = 3/2 PV
- The change in internal energy does not depend on path (unlike W and Q)

First Law in Action

- $W_{a}=2 p_{o} V_{o}, W_{b}=p_{o} V_{o}$
- $\Delta \mathrm{U}_{\mathrm{a}}=\mathrm{o}, \Delta \mathrm{U}_{\mathrm{b}}=0$
- $\Delta \mathrm{U}=\mathrm{O}-\mathrm{W}$
- $\mathrm{O}_{\mathrm{a}}=2 \mathrm{p}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}, \mathrm{O}_{\mathrm{b}}=\mathrm{p}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}$

- To get more work out of path a, we had to add more heat to the system

