College Physics I: 1511 Mechanics & Thermodynamics

Professor Jasper Halekas Van Allen Lecture Room 1 MWF 8:30-9:20 Lecture

Announcements

- Welcome back!
- Second to last HW due Thursday
- Last lab this week

First Law of Thermodynamics

The change in internal energy of a system is equal to the heat added to the system minus the work done by the system.

$$\Delta U = Q - W$$

Change in internal energy Heat added to the system Work done by the system

First Law Bookkeeping

PV Diagrams

Work Done by Isobaric Gas

Fd = PAd = PAV W 0 4 OV=VF-Vi 0

A gas is in a container with a piston lid and is taken from thermodynamic state, A, to a new thermo-dynamic state, B, shown on the P-V diagram below. The work done by the gas is:

A) the area under the P-V curve.

B) minus the area under the P-V curve.

C) Zero

A gas is in a container with a piston lid and is taken from thermodynamic state, A, to a new thermo-dynamic state, B, shown on the P-V diagram below. The work done by the gas is:

Heat Transferred to/from Isobaric Gas

- $\Delta U = Q W = Q P\Delta V => Q = \Delta U + P\Delta V$
 - From ideal gas law $P\Delta V = \Delta(nRT)$
 - For constant n, $P\Delta V = nR \Delta T$
- For monatomic gas $\Delta U = \Delta(3/2 \text{ nRT})$
 - For constant n, $\Delta U = 3/2$ nR ΔT
 - $Q = nR \Delta T + 3/2 nR \Delta T = 5/2 nR \Delta T$
 - (monatomic, constant n)

Fsabanic $\Delta u = Q - w$ = Q - P DV =) Q = DU + PLSV PV = nRT $\Rightarrow \rho \Delta V = \Delta (nRT)$ = $nR \Delta T$ for const. n= D(3/2NuT) = D(3/2NRT) for monatomic gas DU Q = NR DT + 3/2 NR DT $= \frac{5}{2} \eta R \Delta T$

Temperature & Volume for Isobaric Gas

- PV = nRT
 V = nRT/P
- If heat is added, temperature goes up, volume goes up, and work is done by gas
- If heat is extracted, temperature goes down, volume goes down, and work is done on gas
 - You can produce heat by compressing the gas!

Work Done by Isochoric Gas

- Isochoric = Constant Volume
- No movement means no work.
 - (this does not mean there is no heat Q)

Heat Transferred to/from Isochoric Gas

- $\Delta U = Q W = Q$ (since W = o)
- For monatomic gas $\Delta U = \Delta(3/2 \text{ nRT})$
 - For constant n, Q = ΔU = 3/2 nR ΔT = 3/2 Nk ΔT
 - This just corresponds to the total change in kinetic energy, since the average kinetic energy per atom is 3/2 kT

[Isochoric] $DU = Q - W \qquad (W = 0)$ BU = D(3/2 MRT) for monatomic If n constant. a = ou = (3/2 nRDT)

Temperature & Pressure for Isochoric Gas

- PV = nRT
- P = nRT/V
- If heat is added, temperature goes up, and pressure goes up
- If heat is extracted, temperature goes down, and pressure goes down

Ideal Gas Processes

Process	ΔU	Q	W
Constant Volume (Isochoric)	3/2 nR ∆T (monatomic)	3/2 nR ∆T (monatomic)	0
Constant Pressure (Isobaric)	3/2 nR ∆T (monatomic)	5/2 nR ∆T (monatomic)	$P\Delta V = nR \Delta T$

Work and Heat: Isobaric vs. Isochoric

Isobaric (constant n, P)

- Heat added Q = 5/2 nR Δ T (monatomic)
- Work done as gas expands (volume increases)
- Isochoric (constant n, V)
 - Heat added Q = 3/2 nR Δ T (monatomic)
 - No work done (volume constant)
- More heat required to change temperature of isobaric gas since some of the heat goes to work

Isobaric Isocharic $Q_v = \frac{5}{2} nR DT$ $Q_v = \frac{3}{2} nR DT$ specific heat Q=mc DT

rewrite $Q = nC \Delta T$ C = malar heat capacity = J(mile °C) $C_{p} = Q_{p} / (n bT)$ = 5/2 R

CV = QV/(NDT) = 3/2 R

Specific Heat Capacity

- For a solid Q = mc ΔT
- For an ideal gas we can write Q = nC ΔT in terms of a molar heat capacity
 - $C = Q/(n \Delta T)$
 - Units of C = [J]/([mole][°C])
- For a monatomic gas, these are:
 - $C_P = Q_{isobaric}/(n \Delta T) = 5/2 R$
 - $C_V = Q_{isochoric}/(n \Delta T) = 3/2 R$

What is the total work done along paths a and b?

A.
$$W_a = p_o V_o, W_b = p_o V_o$$

B. $W_a = 2p_o V_o, W_b = 2p_o V_o$
C. $W_a = 2p_o V_o, W_b = p_o V_o$
D. $W_a = p_o V_o, W_b = 2p_o V_o$

What is the total work done along paths a and b?

A.
$$W_a = p_o V_o, W_b = p_o V_o$$

B. $W_a = 2p_o V_o, W_b = 2p_o V_o$
C. $W_a = 2p_o V_o, W_b = p_o V_o$
D. $W_a = p_o V_o, W_b = 2p_o V_o$

- Work only along
horitontal legs

$$w = 2\rho (2V - V - V - 2\rho V$$

General Rule for Work Done by a Gas: Compute Area on P-V Diagram

Increase in volume => positive work done by gas

Decrease in volume => negative work done by gas (positive work done on gas)

 What is the change in total internal energy along paths a and b?

A.
$$\Delta U_a = -p_o V_o, \Delta U_b = -p_o V_o$$

B. $\Delta U_a = -2p_o V_o, \Delta U_b = -p_o V_o$
C. $\Delta U_a = o, \Delta U_b = o$
D. $\Delta U_a = 2p_o V_o, \Delta U_b = p_o V_o$

 What is the change in total internal energy along paths a and b?

A.
$$\Delta U_a = -p_o V_o, \Delta U_b = -p_o V_o$$

B. $\Delta U_a = -2p_o V_o, \Delta U_b = -p_o V_o$
C. $\Delta U_a = o, \Delta U_b = o$
D. $\Delta U_a = 2p_o V_o, \Delta U_b = p_o V_o$

U proportional to T but T = PV/nR $T_1 = 210V.(nR)$ $T_{2} = P_{0} - 2V_{0} / P_{1} = T_{1}$ $s_{0} \Delta u_{0} = 0$ $\Delta u_{0} = 0$

Internal Energy and State Variables

- U proportional to temperature for ideal gas
 For monatomic gas U = 3/2 nRT
- But, by the ideal gas law, PV = nRT
 - So, for constant n, U is proportional to PV
 - For monatomic gas, U = 3/2 PV
- The change in internal energy does not depend on path (unlike W and Q)

First Law in Action

•
$$W_a = 2p_o V_o, W_b = p_o V_o$$

• $\Delta U_a = o, \Delta U_b = o$
• $\Delta U = Q - W$
• $Q_a = 2p_o V_o, Q_b = p_o V_o$
• V_0
• V_0

 To get more work out of path a, we had to add more heat to the system