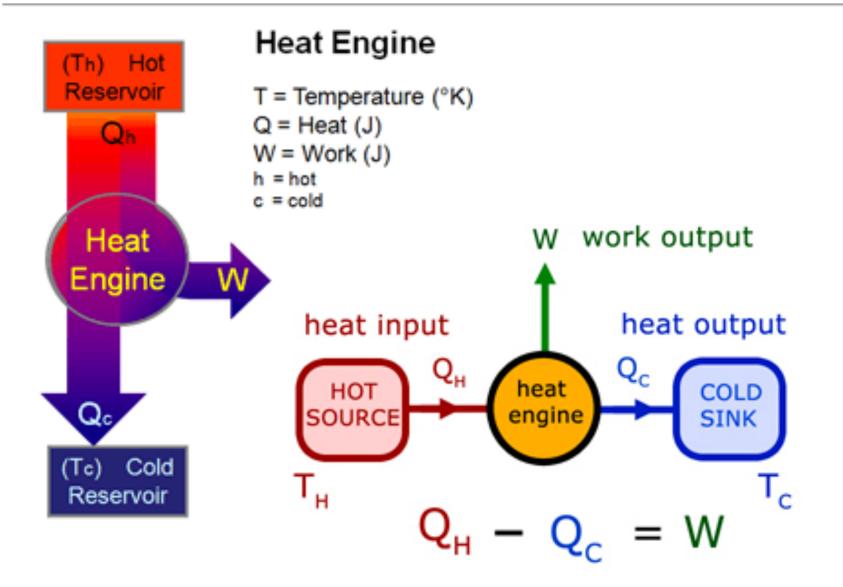
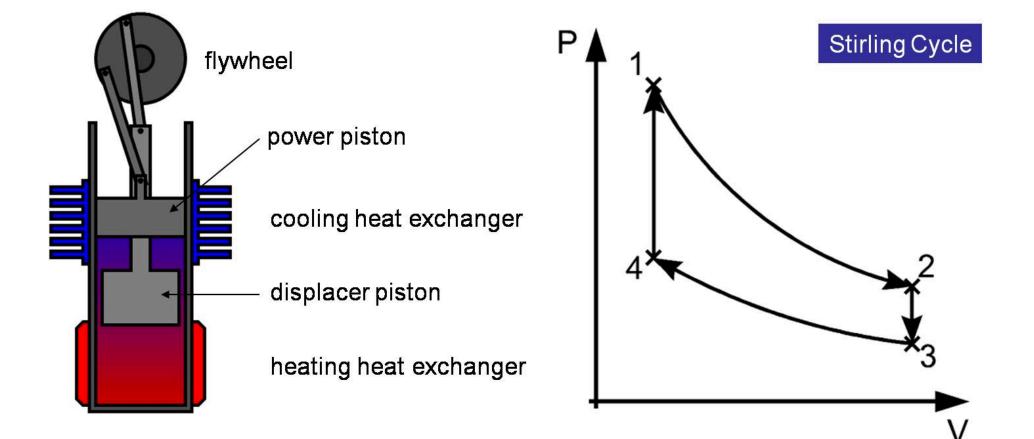
College Physics I: 1511 Mechanics & Thermodynamics

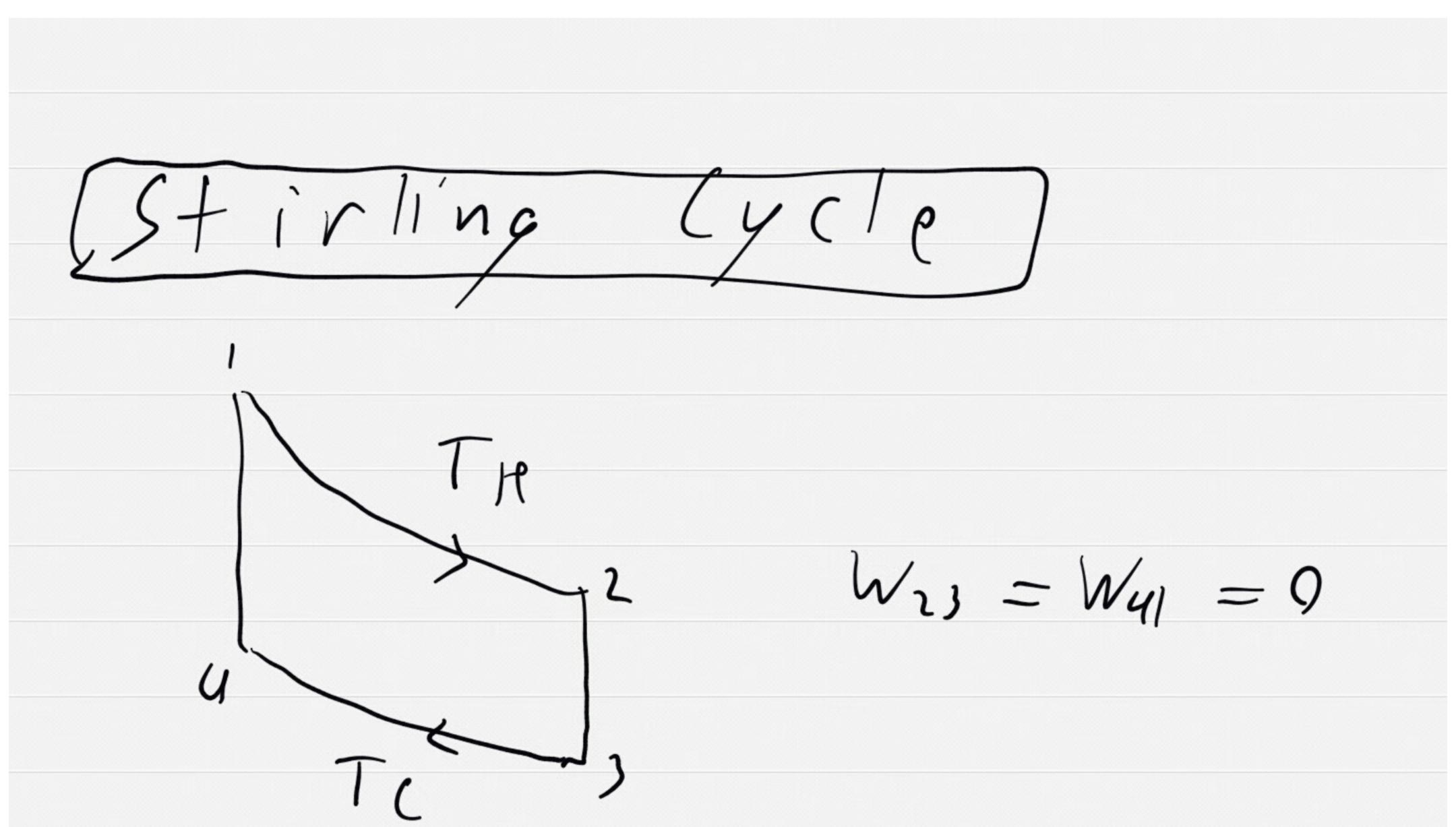
Professor Jasper Halekas Van Allen Lecture Room 1 MWF 8:30-9:20 Lecture

Heat Engines

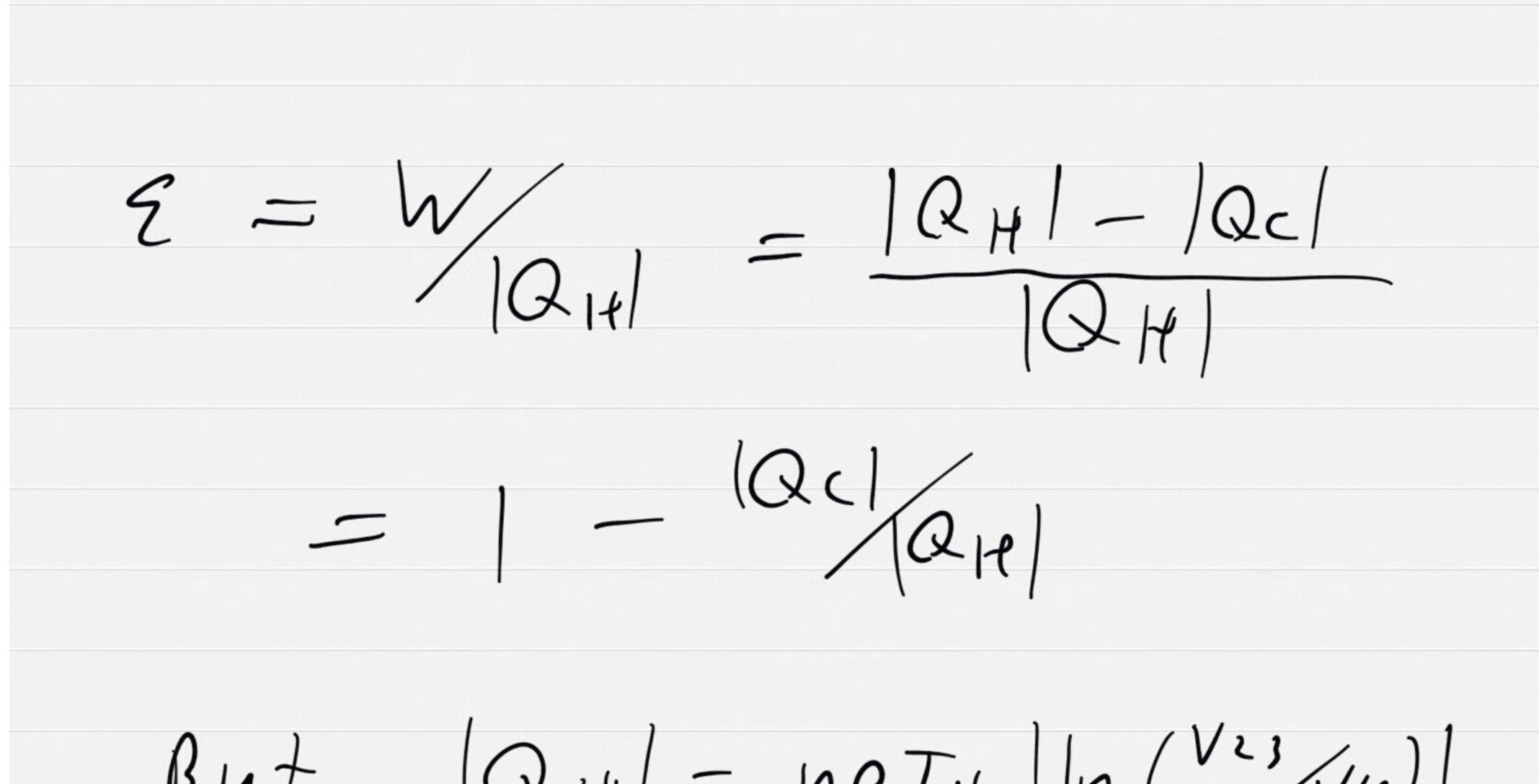


Stirling Engine

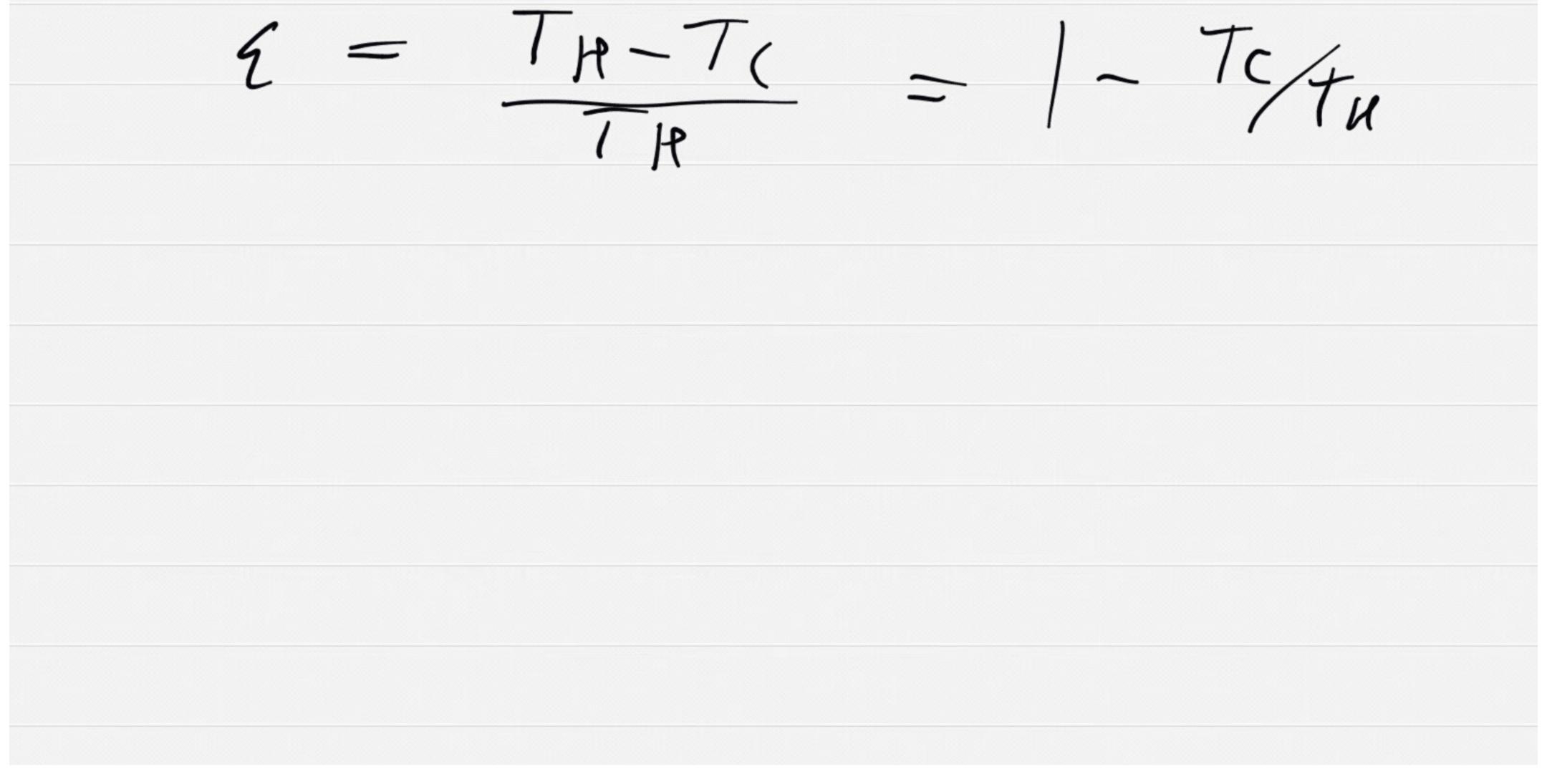




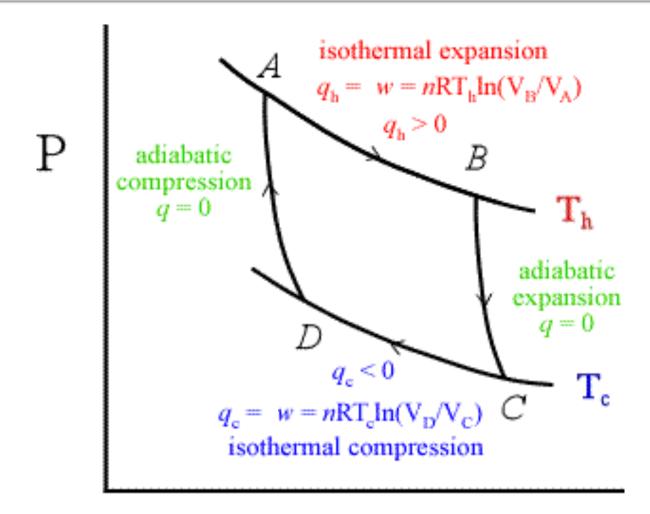
 $W_{12} = nRT_H \ln \left(\frac{V_{13}}{V_{14}} \right)$ $= Q_H > 0$ $w_{34} = nRTc \ln (\frac{V_{14}}{V_{23}})$ = Qc < Q $= W_{12} + W_{34}$ $= Q_H + Q_C$ Wtat = |QHel - |Qcl



$$\begin{aligned} |Q_{14}| &= NRT_{14} |ln(V_{14})| \\ |Q_{2}| &= nRT_{2} |ln(V_{14})| \\ &= nRT_{2} |ln(V_{23})| \\ |Q_{1}| &= nRT_{2} \\ |Q_{14}| &= \frac{nRT_{2}}{nRT_{4}} \\ &= T_{2} / T_{4} \end{aligned}$$



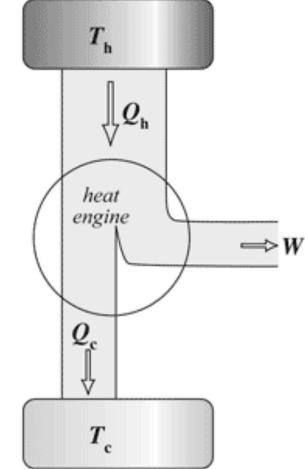
Work and Heat: Carnot Cycle



Heat Engine Efficiency

$$\varepsilon = \frac{W}{Q_{\rm h}} = \frac{Q_{\rm h} - Q_{\rm c}}{Q_{\rm h}} = 1 - \frac{Q_{\rm c}}{Q_{\rm h}}$$
$$\varepsilon = \frac{T_{\rm h} - T_{\rm c}}{T_{\rm h}} = 1 - \frac{T_{\rm c}}{T_{\rm h}}$$

(with heat input and output occuring at fixed temperatures)



Heat Engine Efficiency

- For a reversible cycle the efficiency is (T_H-T_C)/ T_H
- The only way this efficiency could be 100% is if T_c=0 Kelvin (absolute zero)
 - Efficiency of 100% would imply complete conversion of input heat to output work
 - Since it's not possible to reach absolute zero, it's not possible to have a 100% efficient heat engine

Second Law of Thermodynamics

2nd Law of Thermodynamics:

- 1. Heat flows spontaneously from a hot body to a cool one.
- 2. One cannot convert heat completely into useful work.
- 3. Every isolated system becomes disordered in time.

Another statement of the second law of thermodynamics:

The total entropy of an isolated system never decreases.

$\Delta S = \frac{Q}{T}$

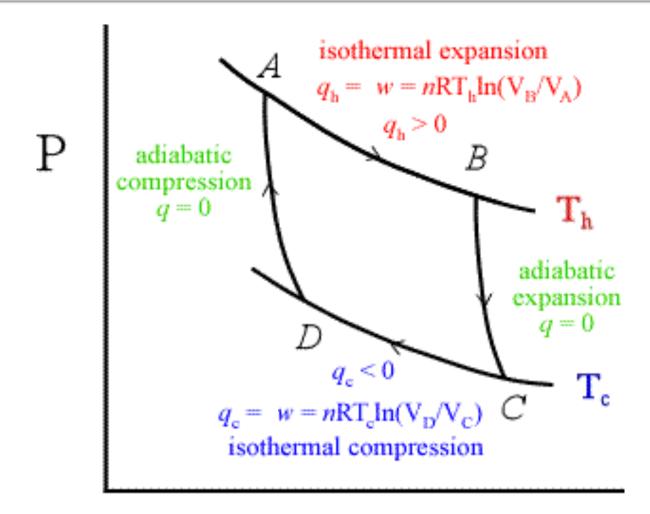
True only for a reversible process!

- A gas, confined to an insulated cylinder, is compressed adiabatically (and reversibly) to half its original volume. Does the entropy of the gas increase, decrease, or remain unchanged during this process?
- 1) increase
- 2) decrease
- 3) remain unchanged

- A gas, confined to an insulated cylinder, is compressed adiabatically (and reversibly) to half its original volume. Does the entropy of the gas increase, decrease, or remain unchanged during this process?
- 1) increase
- 2) decrease

3) remain unchanged

Work and Heat: Carnot Cycle



$$Carnot (ycle Entropy)$$

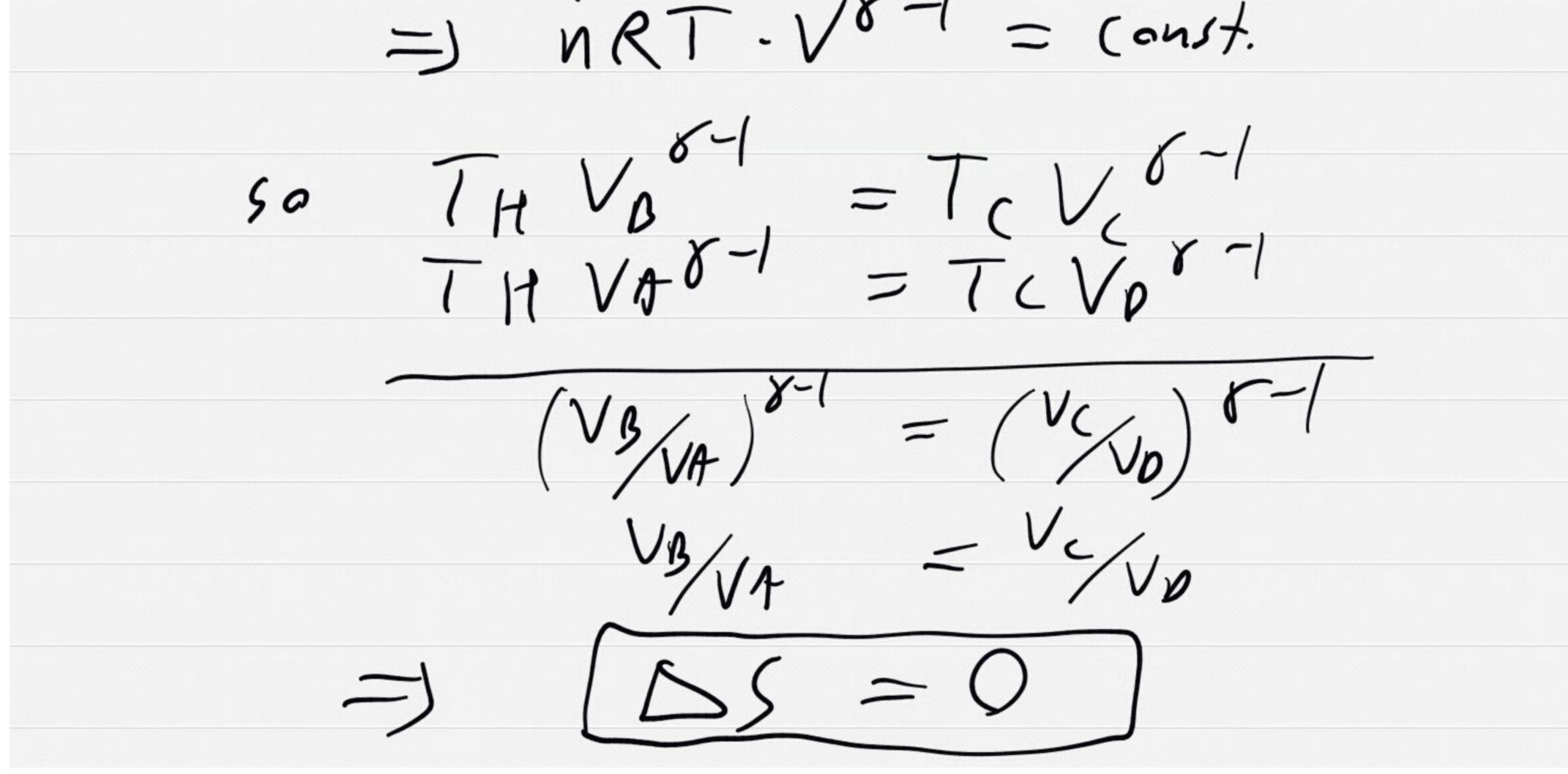
$$DS = 0 \quad on \quad B \rightarrow C$$

and $D \rightarrow A$

$$DSAB = Q + f / T_{H}$$

$$= p R T_{H} + p (V_{B} / p) / p$$

NRIHING /VH/TH = NR In (VA) $D_{CD} = nR ln(\sqrt{vc})$ = -nR ln(\sqrt{vc}) 55 = NR[In(V/VA) - In(V/Vb)] PV' = (oust.) but PV = nRT $= NRT \cdot V^{S-1} = (oust.)$



Total Entropy in Carnot Cycle

Carnot Cycle, Entropy $\Delta S = 0$

 Heat is exchanged in the isothermal portions:

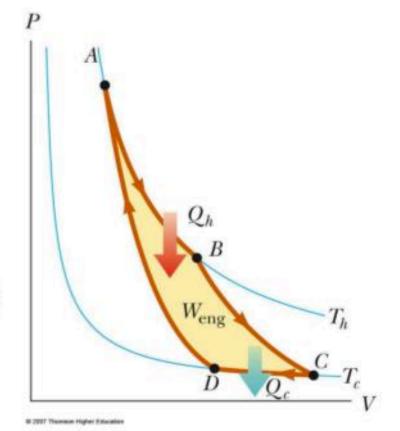
 $Q_{h} = \Delta E_{int} - W_{AB} = nRT_{h} ln(V_{B}/V_{A})$ $Q_{c} = nRT_{c} ln(V_{C}/V_{D})$

- So entropy is also changed:
 - $\Delta S = +Q_h/T_h Q_c/T_c$ = Rln{(V_BØ_D)/(V_AV_c)}
- For the adiabatic portions

 $\begin{array}{l} \mathsf{T}_{\mathsf{h}}\mathsf{V}_{\mathsf{B}}^{\gamma-1} = \mathsf{T}_{\mathsf{c}}\mathsf{V}_{\mathsf{C}}^{\gamma-1} \\ \mathsf{T}_{\mathsf{h}}\mathsf{V}_{\mathsf{A}}^{\gamma-1} = \mathsf{T}_{\mathsf{c}}\mathsf{V}_{\mathsf{D}}^{\gamma-1} \end{array} \right\} \xrightarrow{} \mathsf{V}_{\mathsf{B}}/\mathsf{V}_{\mathsf{A}} = \mathsf{V}_{\mathcal{O}}/\mathsf{V}_{\mathsf{D}} \\ \text{Therefore,} \end{array}$

 $\ln\{(V_B V_D)/(V_A V_C)\} = 0$

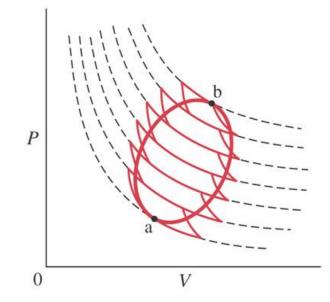
→ So △S = 0 as expected for a reversible cycle.



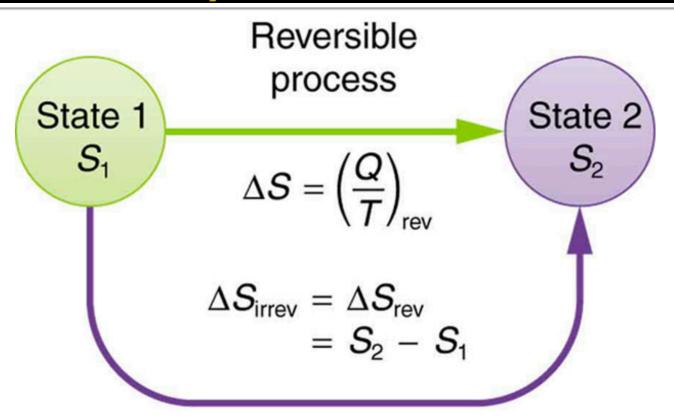
Total Entropy in Reversible Cycles

Entropy

Any reversible cycle can be written as a succession of Carnot cycles; therefore, what is true for a Carnot cycle is true of all reversible cycles.



Computing Change in Entropy for Irreversible System



Irreversible process has the same ΔS

- Consider all possible isothermal contractions of an ideal gas. The change in entropy of the gas:
- I) is zero for all of them
- 2) is not negative for any of them
- 3) is not positive for any of them
- 4) is positive for all of them
- 5) is negative for all of them

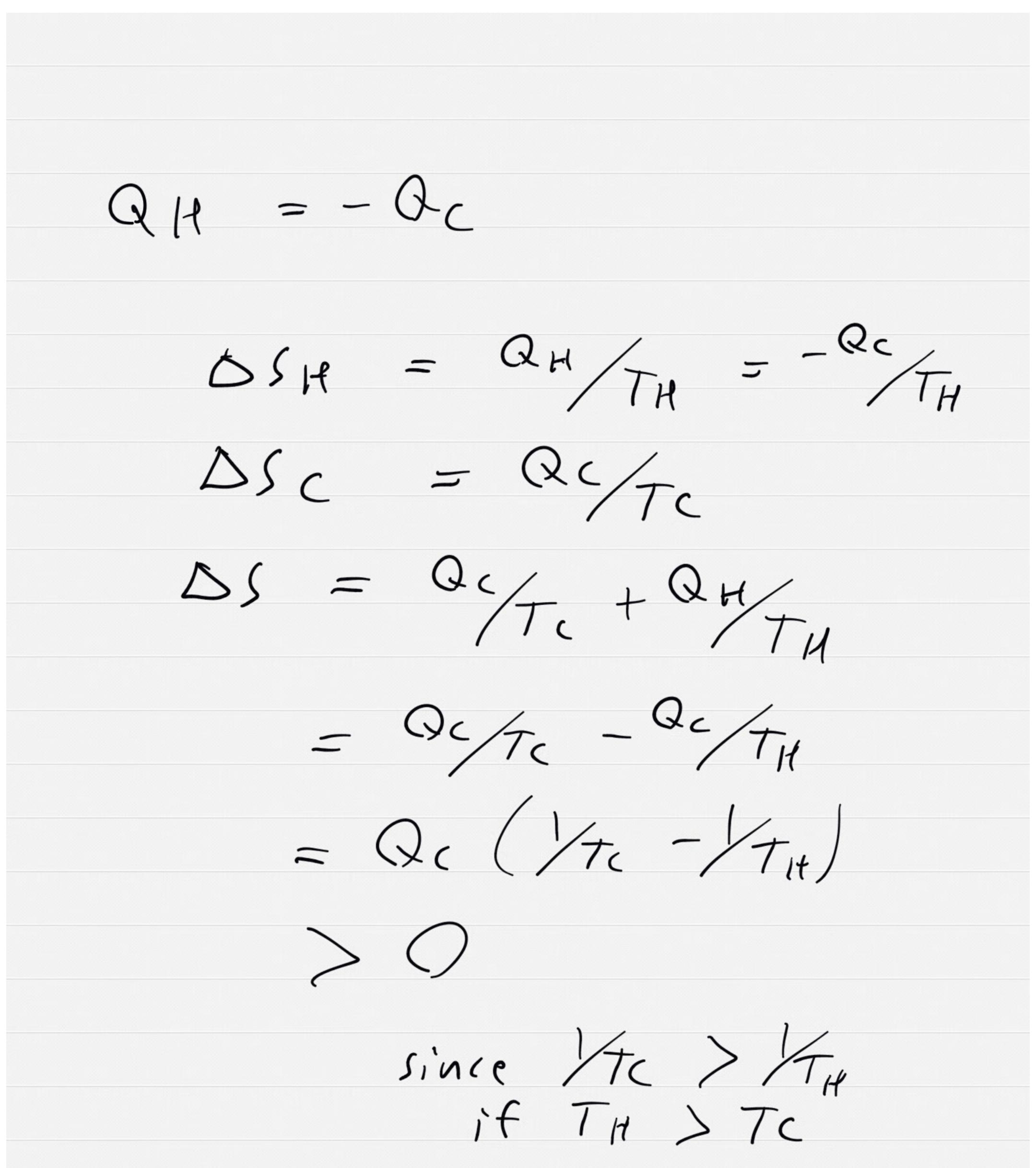
- Consider all possible isothermal contractions of an ideal gas. The change in entropy of the gas:
- 1) is zero for all of them
- 2) is not negative for any of them
- 3) is not positive for any of them
- 4) is positive for all of them
- 5) is negative for all of them

A hot object and a cold object are placed in thermal contact and the combination is isolated. They transfer energy until they reach a common temperature. The change ΔS_h in the entropy of the hot object, the change ΔS_c in the entropy of the cold object, and the change ΔS_{total} in the entropy of the combination are:

1) $\Delta S_h > 0$, $\Delta S_c > 0$, $\Delta S_{total} > 0$ 2) $\Delta S_h < 0$, $\Delta S_c > 0$, $\Delta S_{total} > 0$ 3) $\Delta S_h < 0$, $\Delta S_c > 0$, $\Delta S_{total} < 0$ 4) $\Delta S_h > 0$, $\Delta S_c < 0$, $\Delta S_{total} > 0$ 5) $\Delta S_h > 0$, $\Delta S_c < 0$, $\Delta S_{total} < 0$

A hot object and a cold object are placed in thermal contact and the combination is isolated. They transfer energy until they reach a common temperature. The change ΔS_h in the entropy of the hot object, the change ΔS_c in the entropy of the cold object, and the change ΔS_{total} in the entropy of the combination are:

1)
$$\Delta S_h > 0$$
, $\Delta S_c > 0$, $\Delta S_{total} > 0$
2) $\Delta S_h < 0$, $\Delta S_c > 0$, $\Delta S_{total} > 0$
3) $\Delta S_h < 0$, $\Delta S_c > 0$, $\Delta S_{total} < 0$
4) $\Delta S_h > 0$, $\Delta S_c < 0$, $\Delta S_{total} > 0$
5) $\Delta S_h > 0$, $\Delta S_c < 0$, $\Delta S_{total} < 0$



Heat Transfer and Entropy

- The heat Q transferred from the hot item is equal to the heat Q added to the cold item
- For any given increment of heat:
 - $\Delta S_{H} = -Q/T_{H}$ (negative since heat lost)
 - $\Delta S_c = +Q/T_c$ (positive since heat gained)
 - $\Delta S = Q/T_C Q/T_H$ (positive: $T_H > T_C$ so $1/T_C > 1/T_H$)

Entropy & Time's Arrow

