College Physics I: 1511 Mechanics \& Thermodynamics

Professor Jasper Halekas
Van Allen Lecture Room 1
MWF 8:30-9:20 Lecture

Last Time: Kinematics Equations

$$
\begin{aligned}
v_{f} & =v_{o}+a t \\
x_{f} & =x_{o}+v_{o} t+\frac{1}{2} a t^{2} \\
v_{f}^{2} & =v_{o}^{2}+2 a\left(x_{f}-x_{o}\right) \\
x_{f} & =x_{o}+\frac{1}{2}\left(v_{f}+v_{o}\right) t
\end{aligned}
$$

Kinematic Equations: Vector Form

$$
\begin{aligned}
& \vec{x}=\overrightarrow{x_{0}}+\vec{v}_{0} t+\frac{1}{2} \overrightarrow{a_{t}} t^{2} \\
& \mathrm{x}=\mathrm{x}_{\mathrm{o}}+\mathrm{v}_{\mathrm{x}} \mathrm{t}+1 / 2 \mathrm{a}_{\mathrm{x}} \mathrm{t}^{2} \\
& \mathrm{y}=\mathrm{y}_{\mathrm{o}}+\mathrm{v}_{\mathrm{y} 0} \mathrm{t}+1 / 2 \mathrm{a}_{\mathrm{y}} \mathrm{t}^{2} \\
& \mathrm{z}=\mathrm{z}_{\mathrm{o}}+\mathrm{v}_{\mathrm{zo}} \mathrm{t}+1 / 2 \mathrm{a}_{\mathrm{z}} \mathrm{t}^{2}
\end{aligned}
$$

Vector Position \& Velocity

Average Velocity $\langle\overrightarrow{\mathbf{V}}\rangle=\frac{\Delta \overrightarrow{\mathbf{R}}}{\Delta \mathbf{t}}$
where
$\Delta t=t^{-} \mathbf{t}_{1}=\mathbf{t}_{\mathbf{f}} \mathbf{t}_{\mathbf{i}}$
$\Delta \overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{R}}_{\mathbf{2}}-\overrightarrow{\mathbf{R}}_{1}=\overrightarrow{\mathbf{R}}_{\mathrm{f}}-\overrightarrow{\mathbf{R}}_{\mathrm{i}}$

Vector Position \& Velocity: 2-d

Vector Velocity \& Acceleration: 2-d

Average Acceleration $\langle\vec{a}\rangle=\frac{\Delta \overrightarrow{\mathbf{V}}}{\Delta \mathbf{t}}$ where

$$
\Delta t=\mathbf{t}_{\mathbf{f}}-\mathbf{t}_{\mathbf{i}} \quad \text { and } \quad \Delta \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}}_{\mathbf{f}}-\overrightarrow{\mathbf{v}}_{\mathbf{i}}
$$

Concept Check

Three vectors, A, B, and \mathbf{C} are shown. Which of the vectors at the bottom is $\mathbf{A}+\mathbf{B}-\mathbf{C}$?

$$
\text { A: } \quad \mathrm{B}: \quad \mathrm{C}: \quad \mathrm{D}:
$$

Concept Check

Three vectors, A, B, and \mathbf{C} are shown. Which of the vectors at the bottom is $\mathbf{A}+\mathbf{B}-\mathbf{C}$?

A:
B:
C:
D:

Concept Check

The x - and y-coordinates of a particle as a function of time are $\mathrm{x}(\mathrm{t})=\mathrm{b}+\mathrm{ct} \mathrm{t}, \quad \mathrm{y}(\mathrm{t})=\mathrm{d}-\mathrm{e} \mathrm{t}$, where $\mathrm{b}, \mathrm{c}, \mathrm{d}$, and e are positive constants.
Which arrow could be the velocity of the particle?

E: (it's zero)

Concept Check

The x - and y-coordinates of a particle as a function of time are $\mathrm{x}(\mathrm{t})=\mathrm{b}+\mathrm{ct} \mathrm{t}, \quad \mathrm{y}(\mathrm{t})=\mathrm{d}-\mathrm{e} \mathrm{t}$, where $\mathrm{b}, \mathrm{c}, \mathrm{d}$, and e are positive constants.
Which arrow could be the velocity of the particle?

E: (it's zero)

Concept Check

The x - and y-coordinates of a particle as a function of time are $\mathrm{x}(\mathrm{t})=\mathrm{b}+\mathrm{ct} \mathrm{t}, \quad \mathrm{y}(\mathrm{t})=\mathrm{d}-\mathrm{e} \mathrm{t}$, where $\mathrm{b}, \mathrm{c}, \mathrm{d}$, and e are positive constants.
Which arrow could be the velocity of the particle?

Concept Check

The x - and y-coordinates of a particle as a function of time are $\mathrm{x}(\mathrm{t})=\mathrm{b}+\mathrm{ct} \mathrm{t}, \quad \mathrm{y}(\mathrm{t})=\mathrm{d}-\mathrm{e} \mathrm{t}$, where $\mathrm{b}, \mathrm{c}, \mathrm{d}$, and e are positive constants.
Which arrow could be the velocity of the particle?

Which direction is the acceleration of the particle?

1-d Projectile Motion

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{o}}=0, \quad \mathrm{v}_{\mathrm{o}}=+10 \mathrm{~m} / \mathrm{s} \\
& \mathrm{a}=-\mathrm{g}=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{v}=\mathrm{v}_{\mathrm{o}}+\mathrm{at}=\mathrm{v}_{\mathrm{o}}-\mathrm{gt}
\end{aligned}
$$

Graph of v vs. t :

1-D Velocity \& Acceleration

going up:

Time aloft

$$
\begin{aligned}
& \begin{array}{l}
i \\
i
\end{array} \quad y_{e}=y_{0}+v_{y 0} t+k_{2 a} t^{2} \\
& v_{y_{0}} \uparrow\left\{v_{y f}=v_{y} \cdot t-\frac{1}{2} g t^{2}\right. \\
& \begin{aligned}
= & 0 \text { after it } \\
& \text { falls to ground }
\end{aligned} \\
& v_{y 0} t-1_{2 g} t^{2}=0 \\
& v_{y} \cdot t=x_{2}, t^{2} \\
& v_{y 0}=r_{2} t \\
& 2 v_{y} .=2 t \\
& t=2 \mathrm{volg}
\end{aligned}
$$

Time to toe

$$
\begin{aligned}
& v_{y f}=v_{y_{0}}+a t \\
&=v_{y_{0}}-g t \\
&=0 \text { o top } \\
& \text { so } v_{y_{0}}=g t \\
& \text { or } t=v_{y} \cdot / g
\end{aligned}
$$

- Half of total time going up, half going

2-d Projectile Motion

Projectile Motion

Concept Check

A tranquilizer gun is accurately aimed at a dangerous criminal hanging from the gutter of a building. The target is well within the gun's range, but the instant the gun is fired and the bullet moves with a speed vo , the criminal lets go and drops to the ground. What happens?

The dart
A: hits the criminal regardless of the value of vo .
B: hits the criminal only if vo is large enough.
C: misses the criminal.

Concept Check

A tranquilizer gun is accurately aimed at a dangerous criminal hanging from the gutter of a building. The target is well within the gun's range, but the instant the gun is fired and the bullet moves with a speed vo , the criminal lets go and drops to the ground. What happens?

The dart
A: hits the criminal regardless of the value of vo .
B: hits the criminal only if vo is large enough.
C: misses the criminal.

Key Concept

- Motion in the horizontal and vertical direction are independent!
- You can solve for the horizontal and vertical motion separately
- Though you will have to use common variables like the elapsed time in both equations

Solving 2-d Motion

Vertical Direction

$$
\begin{array}{r}
y(t)=y_{i}+v_{i y} t-\frac{1}{2} g t^{2} \\
v_{y}(t)=v_{i y}-g t
\end{array}
$$

Horizontal Direction

$$
\begin{array}{r}
x(t)=x_{i}+v_{i x} t \\
v_{x}(t)=v_{i x}
\end{array}
$$

$$
a_{y}=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2} \approx-10 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
a_{x}=0
$$

2-d Projectile Motion

Solving 2-d Motion

The vertical and horizontal components of a projectile's motion are independent.

$$
\begin{gathered}
x=\left(v_{0} \cos \theta_{0}\right) t, \\
y=\left(v_{0} \sin \theta_{0}\right) t-\frac{1}{2} g t^{2},
\end{gathered}
$$

$$
\begin{gathered}
v_{x}=v_{0} \cos \theta_{0} \\
v_{y}=v_{0} \sin \theta_{0}-g t
\end{gathered}
$$

Range of projectile
If you know time aloft, you know range.

$$
\begin{aligned}
t & =2 v_{y} \cdot / g \\
\Delta x & =v_{x 0} t \\
& =v_{x_{0}}-2 v_{y} / g \\
& =2 v_{x_{0}} v_{y} \cdot / g
\end{aligned}
$$

What if you know V_{0}, θ ?

$$
\xrightarrow[v_{x_{0}}]{v_{0} \int v_{0} \cos \theta} v_{y}=v_{0} \sin \theta \Rightarrow \Delta x=\frac{2 v \cdot \cos \theta \cdot v_{0} \sin \theta}{9}
$$

