College Physics I: 1511 Mechanics \& Thermodynamics

Professor Jasper Halekas
Van Allen Lecture Room 1
MWF 8:30-9:20 Lecture

Announcements

- Monday is a holiday
- No classes on Monday
- No labs in any section all of next week
- Lecture and discussion sections meet as usual Tuesday-Friday

Announcements

- Great job on the homework!
- Average conceptual score 4.04
- Average math score 4.63
- For some reason some people's grades are showing up as \#/20 instead of \#/10. Rest assured we've only had 10 points that count.
- If you have trouble getting the right answer in problems with angles make sure your calculator is set correctly to degrees / radians (you might need to use either depending on the problem)
- Don't forget about the 2\% tolerance in Wiley Plus!

Relative Velocity

As long as you are not accelerating:

- Motion in a moving frame can be analyzed just like motion in a stationary frame.
- To analyze motion in a different (moving) frame, just subtract the velocity of that frame from all the velocities in the problem

Relative Velocity: 1-d

What is v_{ab}, the velocity of train A with respect to $\operatorname{train} \mathrm{B}$?

$\mathrm{v}_{\mathrm{a}}=60 \mathrm{mph}, \mathrm{v}_{\mathrm{b}}=25 \mathrm{mph}, \mathrm{v}_{\mathrm{ab}}=35 \mathrm{mph}$
$\mathrm{v}_{\mathrm{a}}=6 \mathrm{mph}, \mathrm{v}_{\mathrm{b}}=-35 \mathrm{mph}, \mathrm{v}_{\mathrm{ab}}=95 \mathrm{mph}$

Relative Velocity
Bear
person
Car

In frame of person:

$$
V_{b}=2 \mathrm{~m} / \mathrm{s} \rightarrow \Leftarrow V_{c}=4 \mathrm{~m} / \mathrm{s}
$$

- Car and bear reach person at same time

$$
\begin{aligned}
& \Delta x=v_{0} f \quad(a=0) \\
& \Rightarrow+\Delta x+v_{0} \\
& \Rightarrow \frac{\Delta x_{b}}{v_{b}}=\frac{\Delta x_{c}}{v_{c}} \\
& \frac{26}{2}=\frac{-d}{4} \Rightarrow d=52 \mathrm{~m}
\end{aligned}
$$

Relative Velocity: 2-d

Concept Check

- Imagine you are sitting in a moving car (with open sunroof) traveling at constant velocity and you throw a ball straight up high into the air. Assuming no air resistance, where does it land?
A. In front of the car
B. Behind the car
C. In the car
D. It never lands

Concept Check

- Imagine you are sitting in a moving car (with open sunroof) traveling at constant velocity and you throw a ball straight up high into the air. Assuming no air resistance, where does it land?
A. In front of the car
B. Behind the car
C. In the car
D. It never lands

$$
\begin{aligned}
& \text { Ballistic cart } \\
& \text { Motion of ball } \\
& \Delta y_{6}=v_{y o b} t-y_{2} t^{2} \\
& \Delta x_{6}=v_{x a t} t
\end{aligned}
$$

Motion of cart

$$
\Delta x_{c}=v_{x_{0 c}}+\quad\left[v_{x o c}=v_{x o b}\right]
$$

In frame of cart $v_{x b}=0$, just goes up and comes down

Newton's First Law

- An object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force.

Applications of Newton's $1^{\text {st }}$ Law

NEWTON'S FIRST LAW - BY AMAMAS
Newton's First Law of Motion

Newton's $1^{\text {st }}$ Law of Parenting

Newtons First Law of Parenting

 A child at rest will remain at rest ... until you need your iPad back
What Can You Feel?

- Can you feel that you are moving when you are in a car moving at constant velocity?
- What about when you are accelerating, or braking?
- Can you feel that you are moving when you are in an elevator going up?
- What about when it first starts moving?

Definition: Force (Newton's 2 ${ }^{\text {nd }}$ Law)

$$
\vec{H}=m \vec{a}
$$

Net Force [Newtons $\left.=\mathrm{kg} \mathrm{m} / \mathrm{s}^{2}\right]=$ Mass $[\mathrm{kg}]$ * Acceleration $\left[\mathrm{m} / \mathrm{s}^{2}\right]$ Vector

= Scalar * Vector

Forces

Force Vs. Acceleration (1)

\times Decks are subject to multiple forces (loads)

+ Lateral

+ Uplift

m

Vector Nature of Force

Example: Two forces, labeled \mathbf{F}_{1} and \mathbf{F}_{2}, are both acting on the same object. The forces have the same magnitude $\left|\stackrel{\rightharpoonup}{\mathrm{F}}_{1}\right|=\left|\stackrel{\rightharpoonup}{\mathrm{F}}_{2}\right|=\mathrm{F}$ and are 90° apart in direction:

F

$$
\overline{\mathrm{F}}_{\text {net }}=\overline{\mathrm{F}}_{\text {toal }}=\sum \stackrel{\rightharpoonup}{\mathrm{F}}=\overrightarrow{\mathrm{F}}_{1}+\stackrel{\rightharpoonup}{\mathrm{F}}_{2}
$$

($\sum \stackrel{\rightharpoonup}{\mathrm{F}}$ means "sum of all the forces on the object")

$$
\Rightarrow \mathrm{F}_{\mathrm{net}}=\sqrt{2} \mathrm{~F} \quad(\text { NOT } 2 \mathrm{~F})
$$

Free-Body Diagrams

Rules for drawing "Free-body diagram" or force diagram :
0) Draw a blob representing the object.

1) Draw only the forces acting on the object (not the forces which the object exerts on others).
2) Indicate strength and direction of forces on the object by drawing arrows coming out of the object.
3) Use symbols to represent the magnitudes of the forces (Don't worry about $+/-$ signs. The forces arrows show the directions of the forces already.)

Free-body Diagrams

$$
\stackrel{\bar{F}_{D}}{\stackrel{\vec{F}_{A}}{\longrightarrow}}
$$

If $\left|\vec{F}_{A}\right|=\left|\vec{F}_{B}\right|$ then $\vec{F}_{\text {net }}=0$
\Rightarrow stationary or
moving. wt constant
velocity
If $\quad\left|\vec{F}_{A}\right| \neq\left|\vec{F}_{B}\right|$ then $\vec{F}_{\text {net }} \neq 0$
\Rightarrow accelerating in direction of Fret
egg. $\stackrel{\vec{F}_{n}}{\rightleftarrows} \stackrel{\vec{F}_{A}}{\longleftrightarrow}$

$$
\begin{aligned}
& \overrightarrow{\hat{F}_{n}+t} \\
& \overrightarrow{\vec{a}}
\end{aligned}
$$

Force Vs. Acceleration (2)

(a)

(b)

