College Physics I: 1511 Mechanics \& Thermodynamics

Professor Jasper Halekas
Van Allen Lecture Room 1
MWF 8:30-9:20 Lecture

Newton's First Law

- An object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an unbalanced force.

Definition: Force (Newton's $2^{\text {nd }}$ Law)

$$
\vec{H}=m \vec{a}
$$

Concept Check

- A constant force is exerted for a short time on a cart (initially at rest) on an air track. This force gives the cart a certain final speed. The same force is exerted for the same length of time on another cart, also initially at rest, that has twice the mass of the first one. The final speed of the heavier cart is
- A: one-fourth
- C: half
- E: the same as
...that of the lighter cart.
B: four times
D: double

Concept Check

- A constant force is exerted for a short time on a cart (initially at rest) on an air track. This force gives the cart a certain final speed. The same force is exerted for the same length of time on another cart, also initially at rest, that has twice the mass of the first one. The final speed of the heavier cart is
- A: one-fourth
- C: half
- E: the same as
...that of the lighter cart.
B: four times
D: double

Force on carts

$$
\begin{aligned}
& a=\Delta v / \Delta t \\
& \Rightarrow \Delta v=a \Delta t
\end{aligned}
$$

but $F=m a$

$$
\begin{aligned}
\Rightarrow a & =F / m \\
\text { so } \Delta v & =F / m \Delta t \\
\frac{\Delta v_{2}}{\Delta v_{1}} & =\frac{F / m_{2} \Delta t}{F / m_{1} \Delta t}=\frac{m_{1}}{m_{2}}=1 / 2
\end{aligned}
$$

Concept Check

Three people are pulling on a ring in a "2-D" tug of war. Shown is a "top view".
No one is winning - the ring is sitting still.

The pulls are configured as shown (teams 1 and 2 are each pulling with a force of 100 N .
Team 3 pulls with unknown force T3)

How hard is team 3 pulling?
A) 100 N
B) 200 N
C) 141 N
D) 71 N
E) 0 N

Concept Check

Three people are pulling on a ring in a " $2-\mathrm{D}$ " tug of war. Shown is a "top view".
No one is winning - the ring is sitting still.

The pulls are configured as shown (teams 1 and 2 are each pulling with a force of 100 N .
Team 3 pulls with unknown force T3)

How hard is team 3 pulling?
A) 100 N
B) 200 N
C) 141 N
D) 71 N
E) 0 N

Ring pull

$$
\begin{aligned}
& x \text { - component } \\
& F_{x_{\text {not }}}=F_{1 x}+F_{2 x} \\
& =-100 \cos 45^{\circ}+100 \cos 45^{\circ} \\
& =0 \\
& F_{\text {nat }}=F_{1 y}+F_{2 y}-T_{3} \\
& =109 \sin 45^{\circ}+100 \sin 45^{\circ}-T_{3} \\
& =200 \sin 45^{\circ}-T_{3} \\
& =141-T_{3} \\
& =0 \\
& \Rightarrow T_{3}=141
\end{aligned}
$$

Newton's Third Law

- Newton's Third Law of Motion

- When one object exerts a force on a second object, the second object exerts an equal but opposite force on the first.

Newton's Third Law

- Newton's Third Law (NIII): If body A exerts a force on body B ($\left.=\overrightarrow{\mathrm{F}}_{\mathrm{BA}}=\overrightarrow{\mathrm{F}}_{\text {on B by }}\right)$, then B exerts an equal and opposite force on $A\left(=\vec{F}_{A B}=\vec{F}_{\text {on } A \text { by } B}\right)$.

$$
\overrightarrow{\mathrm{F}}_{\mathrm{BA}}=-\overrightarrow{\mathrm{F}}_{\mathrm{AB}}
$$

2 forces on 2 different objects

Action-Reaction

Horse and Cart

$\longrightarrow F_{1}$

Horse and Cart Analysis

Horse and Cart
Cert $\xrightarrow{\vec{F}_{C H}}$
Horse $\stackrel{\vec{F}_{H C}}{\stackrel{\bar{F}_{H G}}{\longleftrightarrow}}$
Ground $\stackrel{\vec{F}_{G H}}{\leftrightarrows}$

$$
\begin{aligned}
& \vec{F}_{C H}=-\vec{F}_{H C} \\
& \vec{F}_{H G}=-\vec{F}_{G H}
\end{aligned}
$$

Total force on cart $\vec{F}_{C H}$
Total force on horse $\overrightarrow{F H}_{H G}+\vec{F}_{H C}$

Gravitational Force

On Earth

- $\mathrm{F}_{\mathrm{G}}=\mathrm{mg}=\mathrm{W}$ (weight)
- More generally, $\mathrm{F}_{\mathrm{G}}=\mathrm{Gm}_{1} \mathrm{~m}_{2} / \mathrm{r}^{2}$
- (don't need to know this equation)
- $\mathrm{g}=\mathrm{GM}_{\mathrm{E}} / \mathrm{R}_{\mathrm{E}}{ }^{2}$ (E stands for Earth!)

Mass Vs. Weight

Mass

Weight

- is measured in kilograms
- always remains the same
- is closely related to inertia
- can NOT be measured directly
- is measured in Newtons
- can change with location
- is closely related to gravity
- can be measured directly using a scale

Mass Vs. Weight

Mass $=63.5 \mathrm{~kg}$
Weight $=623 \mathrm{~N}$
(140 lbs)

Mass $=63.5 \mathrm{~kg}$ Weight $=103 \mathrm{~N}$ (23 lbs)

\[

\]

 (3914 lbs)

Concept Check

A scale estimates an object's weight by measuring the tension on a spring. There are two forces on the object, the weight (magnitude mg) and the tension, magnitude T , in the cord. For a stationary object, these balance, so a measure of T is equivalent to a measure of weight. What if you pull up hard on the object, accelerating it upward. How will the apparent weight $\mathrm{W}_{\text {app }}$ you register on the scale compare to the weight mg you registered when stationary?

Which equation is true:
A: $\quad \mathrm{W}_{\text {app }}=\mathrm{mg}$
B: $\quad \mathrm{W}_{\text {app }}>\mathrm{mg}$
C: $\quad \mathrm{W}_{\text {app }}<\mathrm{mg}$

Concept Check

A scale estimates an object's weight by measuring the tension on a spring. There are two forces on the object, the weight (magnitude mg) and the tension, magnitude T , in the cord. For a stationary object, these balance, so a measure of T is equivalent to a measure of weight. What if you pull up hard on the object, accelerating it upward. How will the apparent weight $\mathrm{W}_{\text {app }}$ you register on the scale compare to the weight mg you registered when stationary?

Which equation is true:
A: $\quad \mathrm{W}_{\text {app }}=\mathrm{mg}$
B: $\quad \mathrm{W}_{\text {app }}>\mathrm{mg}$
C: $\quad \mathrm{W}_{\text {app }}<\mathrm{mg}$

Weight on scale
scale

$$
\downarrow^{0} T
$$

weight

$$
\begin{aligned}
& \uparrow_{0} T \\
& \downarrow_{w} w=m g
\end{aligned}
$$

Force upward on weight

$$
\begin{aligned}
& =F_{\text {nat }}=T-m g \\
& =0 \text { if } a=0
\end{aligned}
$$

if F net >0
then T-mg >9
on $T>m g$

$$
\begin{aligned}
& m a_{a}=T-m_{g} \Rightarrow T=m a+m g \\
& \text { a poarent weight } W_{\text {app }}=m_{a}+m g
\end{aligned}
$$

