College Physics I: 1511 Mechanics \& Thermodynamics

Professor Jasper Halekas
Van Allen Lecture Room 1
MWF 8:30-9:20 Lecture

Announcements

- All labs and discussion sections will meet this week, and homework is due Thursday as usual
- I will be gone Wednesday
- Prof. Baalrud will substitute
- Office hours extended this Tuesday to 1:30-4:00
- Office hours canceled Wednesday \& Thursday
- Available by e-mail
- Back Friday

Announcements

- Midterm \#1 Equation Sheet Posted (on notes page)
- Sample problems will be posted the week before the midterm

Concept Check

A car rounds a curve while maintaining a constant speed. Is there a net force on the car as it rounds the curve?

A: No-its speed is constant.
B: Yes.
C: Depends

Concept Check

A car rounds a curve while maintaining a constant speed. Is there a net force on the car as it rounds the curve?

A: No-its speed is constant.
B: Yes.
C: Depends

Position/Velocity in Circular Motion

Acceleration in Circular Motion

Acceleration in Uniform Circular

Motion

The velocity \vec{v} is always tangent
to the circle and perpendicular
to \vec{a} at all points.

The acceleration \vec{a} always points toward the center of the circle.

Circles: Radius and Circumference

Circles: Arc Length and Angle

Speed/Velocity of Circular Motion

- Average speed $|\mathrm{v}|=$ distance/time
- Average speed for an arc $|v|=S / \Delta t$
- Average speed for the whole circle $|v|=2 \pi r / T$
- (T = period of revolution)
- Note that the average velocity over a full circle is zero (since displacement = o)
- Later in the course we will learn about "angular velocity"

Centripetal Acceleration

$$
\begin{aligned}
& \theta=S / r \sim \frac{|\Delta \vec{r}|}{r}=\frac{v \Delta t}{r} \\
& \theta=|\Delta \vec{v}| / v \\
& \Delta v / v=\frac{v \Delta t}{r} \\
& \Rightarrow \Delta v=\frac{v^{2} \Delta t}{r} \\
& a=\frac{\Delta v}{\Delta t}=v^{2}
\end{aligned}
$$

Acceleration of Uniform Circular

Motion

Small angle approximation: $\theta \sim \sin \theta \sim \tan \theta$ for small θ

Centripetal Force

Note that to stay in circular motion, there must be a constantly applied force!

Circular Motion

In equilibrium:

$$
\vec{F}_{\text {net }}=\sum \vec{F}=0
$$

Circular motion is not equilibrium:

$$
\vec{F}_{\text {net }}=\sum \vec{F}=m a_{c}=m v^{2} / r=F_{c}
$$

If force removed, an object follows Newton's first law and goes straight

Concept Check

In a game of tetherball, a ball is tied to a pole with a string. While the ball whirls around the pole, in what direction is the acceleration of the ball (at the moment shown?)

(E: Some other direction, not shown.)

Concept Check

In a game of tetherball, a ball is tied to a pole with a string. While the ball whirls around the pole, in what direction is the acceleration of the ball (at the moment shown?)

(E: Some other direction, not shown.)

Te then ball
Free-body

$F_{c}=m v^{2} / r=F_{\text {net }}$
(not an individual
force but the net force)

$$
\begin{aligned}
T_{y} T_{x} \quad \begin{array}{rl}
T_{x} & =T \sin \theta \\
T_{y} & =T \cos \theta \\
F_{x_{n c t}} & =F_{c}=\frac{m v^{2}}{r}=T \sin \theta \\
L 0 & L \sin \theta \\
r \cdot m v^{2} \\
L \sin \theta & =T \sin \theta \\
m v^{2} & =T L \sin ^{2} \theta
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\text { Fynet }=T \cos \theta-m g=0 \\
\Rightarrow m g=T \cos \theta \\
\Rightarrow T=m g \cos \theta
\end{gathered}
$$

Plug into F_{x}

$$
m v^{2}=\frac{m g / \cos \theta}{}-L \sin ^{2} \theta
$$

If v^{2} goes up $\quad \theta$ must gi up to provide needed centripetal force

Whirligig

Hanging mass

$$
T=m g
$$

Whirling mass

$F_{x_{\text {net }}}=F_{C}$

$$
\begin{aligned}
& =m v^{2} / r \\
& =T
\end{aligned}
$$

$$
=m g \quad \Rightarrow v^{2} / r=q
$$

Centripetal acceleration $=g$!

Centripetal Force: Real

Centrifugal Force: Not Real

Non-Inertial Reference Frames

Inertial Frame
Outsider's perspective

Rider's perspective

Concept Check

A rider in a "barrel of fun" finds herself stuck with her back to the wall. Which diagram correctly shows the forces acting on her?

Concept Check

A rider in a "barrel of fun" finds herself stuck with her back to the wall. Which diagram correctly shows the forces acting on her?

Barrel of Fun

$$
\begin{aligned}
& \text { F net }=N=m v^{2} / r \\
& F_{f}=\mu N=\mu m v^{2} / r
\end{aligned}
$$

Te balance W and keep rider from slipping, need:

$$
\mu m v^{2} / v=m g
$$

cr $\mu v / r=g$

