la. $000000 \rightarrow \vec{B}=\mu \cdot n I_{s} \hat{z}$ $=\mu_{0} n k+\hat{z}$

$$
\begin{aligned}
\varepsilon_{\text {ind }} & =-d \Phi_{B} / d t \\
& =-d / d t\left(B \cdot \pi a^{2}\right) \\
& =-\pi a^{2} d B / d t \\
& =-\pi a^{2} \cdot \mu_{0} n \cdot d I_{s} / d t \\
& =-\pi a^{2} \mu_{0} n \cdot k \quad c c w
\end{aligned}
$$

6. $I_{c}(t)=\varepsilon^{\prime} / R=\left(V_{a}+\varepsilon_{\text {ind }}\right) / R$

$$
=\left(V_{0}-\pi a^{2} \mu \cdot n \cdot K\right) / R
$$

$2 a \cdot \vec{E}=-\nabla V$
Note: L $=\mathrm{h}$

$$
=\Delta V / L \hat{z}=V_{0} \sin (\omega t) / L \hat{z}
$$

6. $\& \vec{B}-d \vec{l}=\mu_{0} \varepsilon_{0} d / d t S \vec{E} \cdot d \vec{a}$

$$
B \cdot 2 \pi s=\mu_{0} \varepsilon_{0} d / d t \frac{V_{0} \sin (\omega t) \cdot \pi s^{2}}{L}
$$

$$
\Rightarrow \quad \overline{\vec{B}}=\frac{\mu_{0} \varepsilon_{0} \omega V_{0} \cos (\omega t) \cdot s}{2 L} \hat{\phi}
$$

$2 c$.

$$
\begin{aligned}
& \vec{S}=\frac{1}{\mu_{0}}(\vec{E} \times \vec{B}) \\
& =\frac{1}{\mu_{0}}-\frac{V_{0} \sin (\omega t)}{L} \frac{\mu_{0} q_{0} \omega v_{0} \cos (\omega t) s}{2 L} \hat{z} \times \hat{q_{0}} \\
& =-\frac{\varepsilon_{0} \varepsilon V_{0}^{2} \sin (\omega t) \cos (\omega t) s}{2 L^{2}} \hat{s}
\end{aligned}
$$

$2 d$.

$$
\begin{aligned}
u & =1 / 2 \varepsilon_{0} E^{2}+B^{2} / 2 \mu_{0} \\
& =\frac{1}{2} \varepsilon_{0} \frac{v_{0}^{2} \sin ^{2}(\omega t)}{L^{2}}+\frac{1}{2 \mu_{0}} \frac{\mu_{0}^{2} \varepsilon_{0}^{2} \omega^{2} v_{0}^{2}\left(\cos ^{2}(\omega t) s^{2}\right.}{4 L^{2}} \\
& =\frac{1}{2} \varepsilon_{0} \frac{V v^{2}}{L^{2}}\left[\sin ^{2}(\omega t)+\left(\frac{w}{C}\right)^{2} \frac{s^{2}}{4} \cos ^{2}(\omega t)\right]
\end{aligned}
$$

$2 e$.

$$
\begin{aligned}
& u \sim \frac{1}{2} \varepsilon_{0} \cdot \frac{v \cdot 2}{L} / 2 \sin ^{2}(w t) \\
& \partial u / a t \sim \varepsilon_{0} \frac{v_{0} L^{2}}{L^{2}} \cdot \omega \sin (\omega t) \cos (\omega t) \\
& -\nabla \cdot \vec{S}=-\frac{1}{s} \text { a/os (s } S_{s} \text {) } \\
& =\frac{\varepsilon_{0} \omega v_{0}^{2} \sin (\omega t) \cos (\omega t)}{2 L^{2} s} a / \partial s\left(s^{2}\right) \\
& =\frac{\varepsilon_{0} h v_{0}^{2} \sin (\omega t) \cos (\omega t)}{L^{2}}=2 u / \partial+/ /
\end{aligned}
$$

$3 a$.

$$
\begin{aligned}
& \vec{g}=\varepsilon \cdot(\vec{E} \times \vec{B})=\varepsilon_{0}\left[E_{0} \cos (k z-\omega t) \hat{y}\right. \\
& \left.\times \frac{E_{0}}{c} \cos (k z-\omega+) \hat{z} \times \hat{y}\right] \\
& \begin{array}{l}
\Rightarrow q_{0}=\varepsilon_{0} E_{0}^{2} / c \\
\text { or }=\sqrt{c E_{0} / \varepsilon_{0}}
\end{array} \\
& \text { So } \begin{array}{l}
\vec{E}=\sqrt{\frac{c q_{0}}{\varepsilon_{0}}} \\
\cos (k z-\omega t) \hat{y} \\
\vec{B}=-\sqrt{\frac{g_{0}}{c \varepsilon_{0}}} \cos (k z-\omega t) \hat{x}
\end{array}
\end{aligned}
$$

36.

$$
\begin{aligned}
T z z= & \varepsilon_{0}\left(E_{z} E_{z}-1_{2} E^{2}\right) \\
& +\frac{1}{\mu_{0}}\left(B_{z} B_{z}-1_{2} B^{2}\right) \\
= & -\lambda_{2} \varepsilon_{0} E^{2}-B_{2} / 2 \mu_{0} \\
= & -\frac{1}{2}\left[\varepsilon_{0} \frac{c y_{0}}{r_{0}}+\frac{1}{\mu_{0}} \frac{g_{0}}{\varepsilon_{0} c}\right] \cos ^{2}(k z-\omega t) \\
= & -c g_{0} \cos ^{2}(k z-w t)
\end{aligned}
$$

36

$$
\begin{aligned}
\vec{F} & =\int T_{z z} \cdot \begin{array}{c}
-d a z \\
\text { cunt normal } \\
\text { in }-z
\end{array} \\
& =A C q \cdot \cos ^{2}(k z-\omega t) \hat{z}
\end{aligned}
$$

Note: There is also a dg/dt term but it averages to zero
I didn't hold it against you if you didn't calculate it.
$3 d . \quad P=\langle F\rangle / A=C q \cdot\left\langle\cos ^{2}(k z-\omega t)\right\rangle$

$$
=\frac{1}{2} c 9_{0}
$$

should have

$$
\begin{aligned}
P & =\langle s\rangle / c \\
& =\frac{\langle g\rangle c^{2}}{c} \\
& =\langle g\rangle c \\
& =\frac{1}{2} 90 c
\end{aligned}
$$

