

Electricity and Magnetism II: 3812

Professor Jasper Halekas Van Allen 70 MWF 9:30-10:20 Lecture

Announcements

- We will be in an online format for the rest of the semester
 - We will hold both lectures and office hours virtually using Zoom
 - Homework assignments should be turned in at the usual time/date in electronic form by e-mail
 - The remaining exams will be take-home openbook format
 - The course schedule and syllabus have been modified to reflect these and other changes

Key Syllabus/Schedule Changes

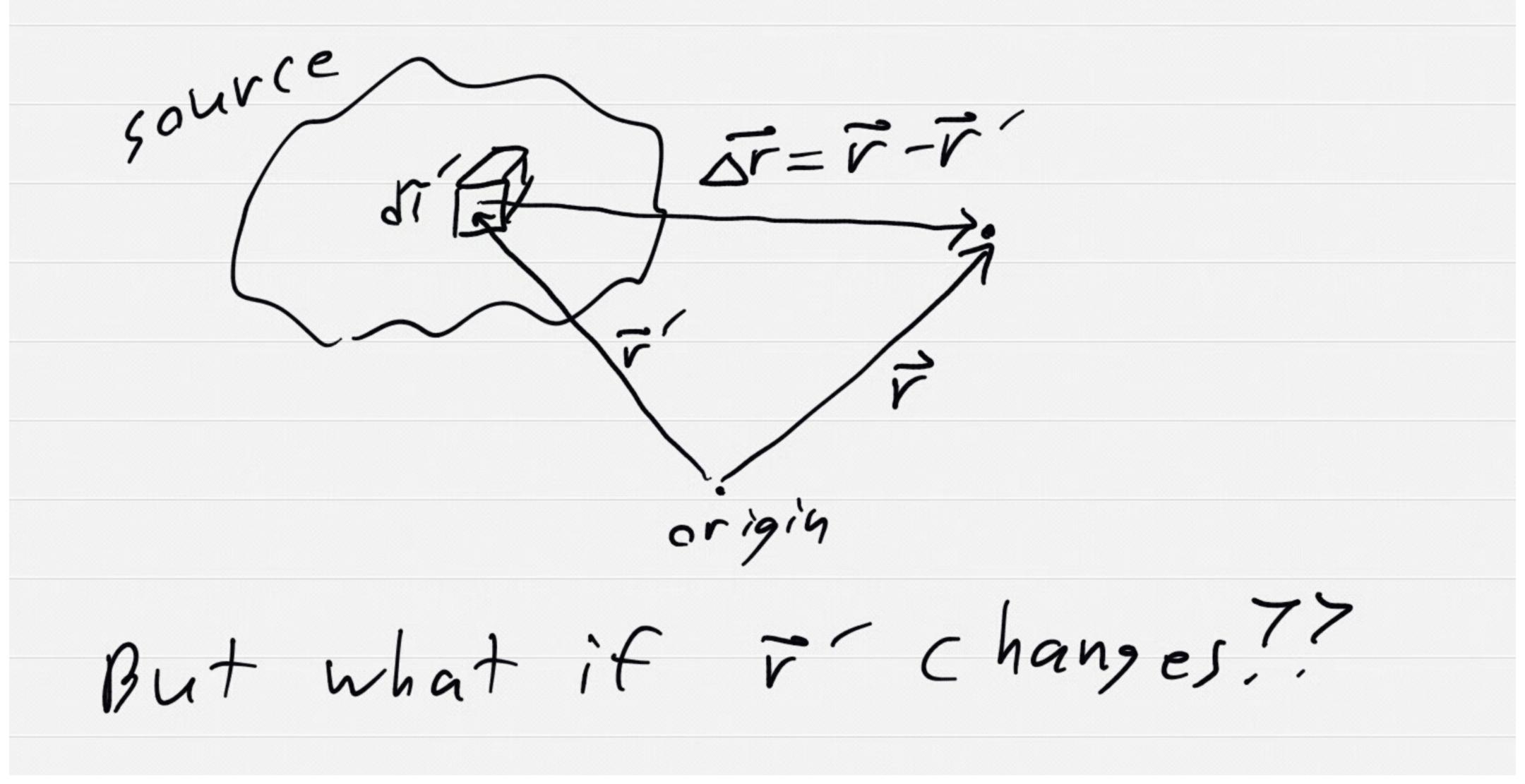
- Lectures and Office Hours
 - Moved to virtual format
- Material Covered
 - Coverage of Ch. 12 reduced to "selected topics" due to extended spring break
- Homework
 - Electronic turn-in rather than physical
 - Number of assignments reduced (10 instead of 11)
 - Delayed by one week due to extended spring break
- Exams
 - Midterm 2 delayed by one week due to extended spring break
 - Midterm 2 and Final both changed to take-home open-book format with two-hour duration

Revised Schedule

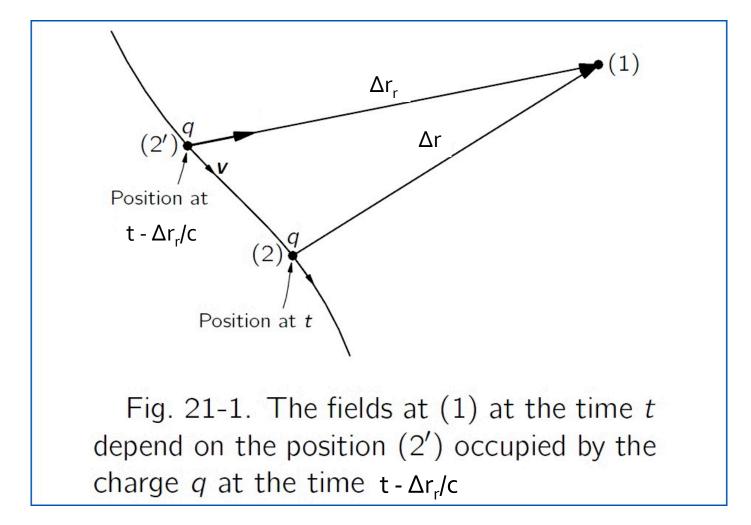
REVISED VERSION 3/18/2020

Physics 3812

Electricity and Magnetism II


2020 Schedule

Dates	Week	Reading (Due Monday	HW Due Friday	Notes
		unless noted)	, , , , , , , , , , , , , , , , , , ,	
Jan. 20-24	Week 1	Ch. 7.1	No HW	Holiday Monday 1/20
Jan. 27-31	Week 2	Ch. 7.2	HW 1	
Feb. 3-7	Week 3	Ch. 7.3	HW 2	
Feb. 10-14	Week 4	Ch. 8	HW 3	
Feb. 17-21	Week 5	Ch. 9.1-9.2	HW 4	
Feb. 24-28	Week 6	No Reading	No HW	Midterm 1 Ch. 7-9.2 Wednesday Feb. 26
Mar. 2-6	Week 7	Ch. 9.3-9.4	HW 5	
Mar. 9-13	Week 8	Ch. 9.5-10.1	HW 6	
Mar. 16-20	Spring Break	No Reading	No HW	Spring Break, Woohoo!
Mar. 23-27	Extended	No Reading	No HW	COVID-19, isn't it fun?
	Spring Break			
Mar. 30-Apr. 3	Week 9	Ch. 10.2-10.3	HW 7	
Apr. 6-10	Week 10	Ch. 11.1	HW 8	
Apr. 13-17	Week 11	Ch. 11.2	HW 9	
Apr. 20-24	Week 12	No Reading	No HW	Midterm 2 Ch. 9.3-11
				Wednesday Apr 22
Apr. 27-May 1	Week 13	Ch. 12.1-12.3 (Selected Topics)	HW 10	
May 4-8	Week 14	No Reading	No HW	
May 11-15	Finals Week	No Reading	No HW	Final Exam Ch. 7-12 Monday May 11


Discussion of Values

- The next few weeks (or months) are going to be a learning experience for us all
- Communication will be even more important during this time period
 - Please continue to feel free to ask questions during lecture
 - You can virtually "raise your hand" if you have a question
 - You can use the "chat" feature to ask a question by text
 - You can also just un-mute and speak as needed
 - Please raise any other issues or concerns you have, either during virtual office hours or by e-mail

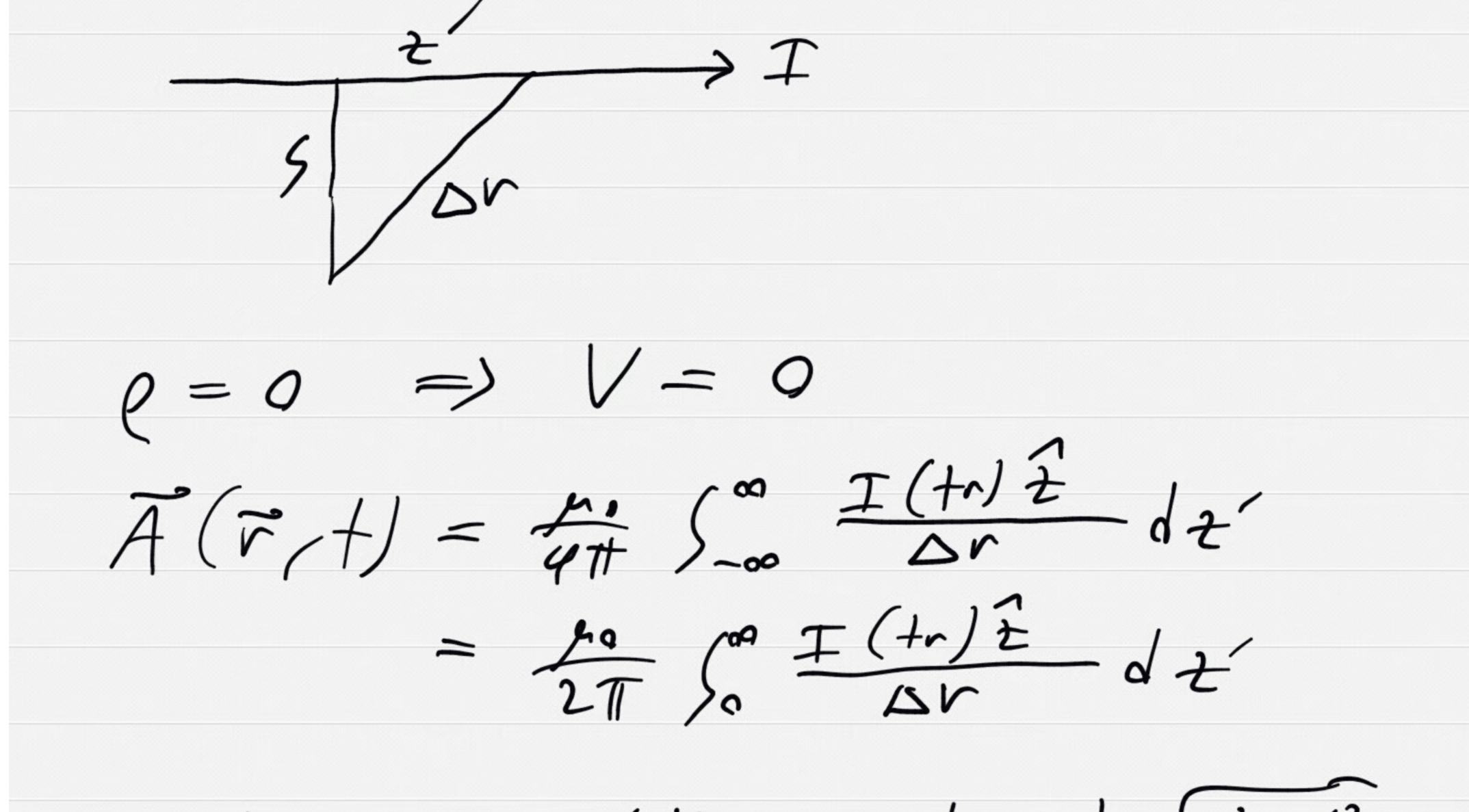
[0.2 Continuous Distributions] Retarded Potentials Recall Eqs. for V, A in Lorent Gauge $\Box^2 \overline{A} = \nabla^2 \overline{A} - \frac{1}{2^2} \frac{\sqrt{2}}{\sqrt{2}} = -\mu_0 \overline{J}$ $\Box^2 V = \nabla^2 V - \frac{1}{c^2} \frac{\partial^2 V}{\partial t^2} = -\frac{Q}{c}.$ $- \text{Static (ase} \\ \nabla^2 \overline{A} = -\mu_0 \overline{J}, \nabla^2 V = -\frac{1}{4}.$ $\Rightarrow \overline{A(r)} = \frac{H}{H} \int \frac{\overline{J(r)}}{Dr} dT'$ $V(\vec{r}) = \frac{1}{4\pi} \int \frac{V(\vec{r})}{\Delta r} dr'$

Retarded Potentials

-Information about source takes time to propagate at the speed of light $\Delta + = \Delta r/c$ - Effect seen at time t at \vec{r} happened at $tr = t - \delta r_c$ at \vec{r}' - tr = "retarded time" $\begin{aligned} \mathcal{L}_{uess} : \quad V(\overline{r}, t) &= \frac{1}{4\pi \epsilon} \int \frac{e(\overline{r}, tr)}{\Delta r} d\tau \\ \overline{A}(\overline{r}, t) &= \frac{4\pi \epsilon}{4\pi} \int \frac{\overline{J}(\overline{r}, tr)}{\Delta r} d\tau \end{aligned}$ In other words potentials depend on "old" distribution of sources Well prove it for V $\nabla V = \mathcal{V}\left(\frac{1}{4\pi\epsilon}, \frac{\mathcal{V}\left(\overline{r'}, tr\right)}{\Delta r} dr'\right)$ $= \frac{1}{4\pi\epsilon}, \mathcal{V}\left(\frac{\mathcal{V}\left(\overline{r'}, tr\right)}{\Delta r}\right) dr'$ $= \frac{1}{4\pi \epsilon} \int \left[\frac{\nabla e(F'/tr)}{\Delta r} + e(F'/tr) \nabla \frac{1}{\Delta r} \right] dr'$

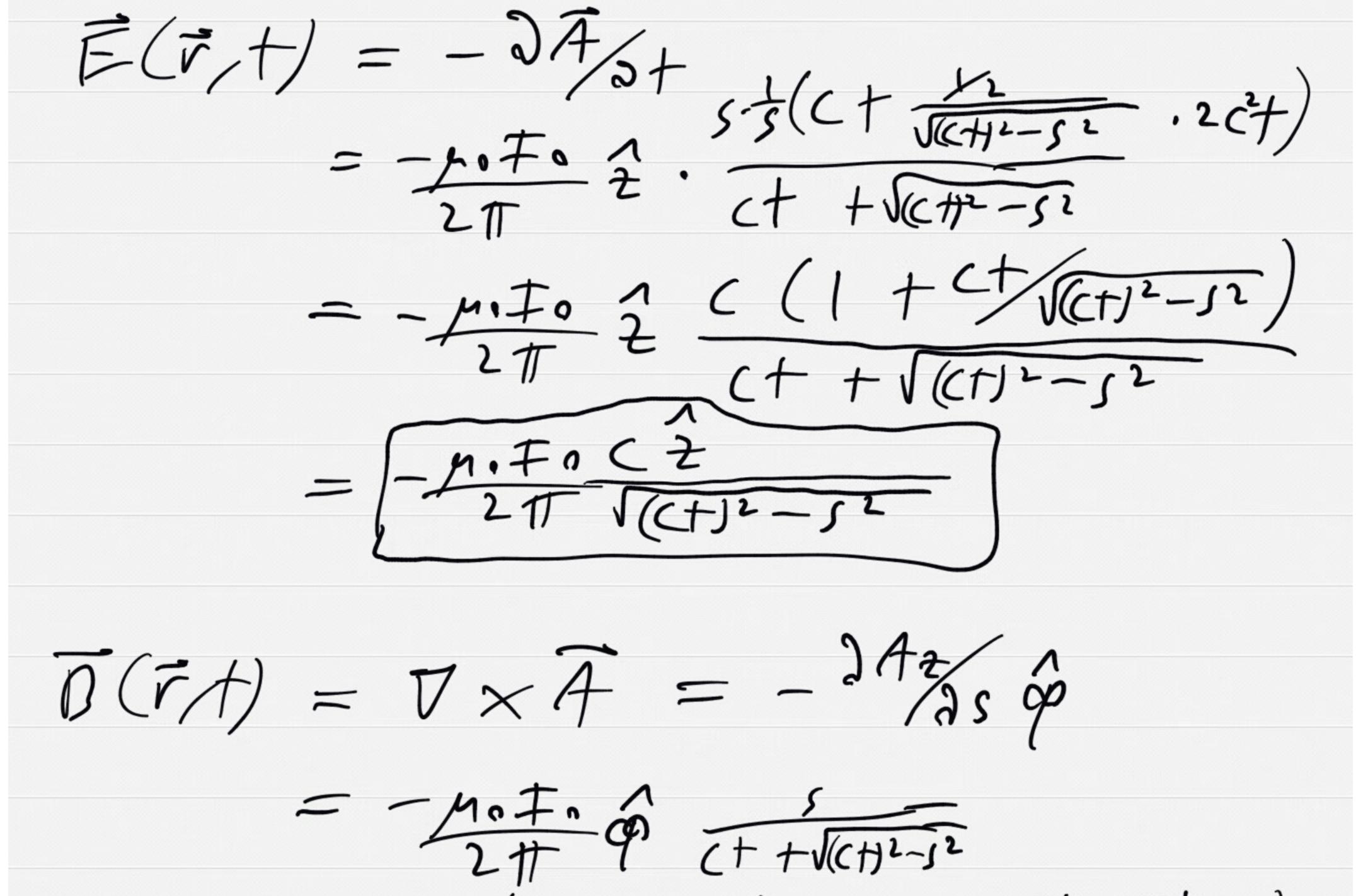
e does not depend on F but it does depend on tr =t- & Ve = 2/Str Vtr $\frac{\partial}{\partial tr} = \frac{\partial}{\partial t} = \dot{\rho}$ $Vtr = -\frac{\partial}{\partial t} = \dot{\rho}$ $Vtr = -\frac{\partial}{\partial r} (\Delta r)$

⇒ Ve = - ter (Ar) Identifies: $\nabla(\Delta n) = \Delta r$ $\nabla(\Delta r) = -\Delta r \Delta r^2$ $\Rightarrow DV = \frac{1}{4\pi\epsilon} \int [-\dot{\xi} \dot{\delta r} - (\dot{\delta r})] dV'$ Next $\nabla^2 V = \frac{1}{4\pi\epsilon} \int \left[-\frac{1}{\epsilon} \nabla \dot{\rho} \cdot \frac{\dot{\rho}r}{\Delta r} - \dot{\rho} \nabla \left(\frac{\dot{\rho}r}{\delta r} \right) - \nabla \rho \cdot \frac{\dot{\rho}r}{\delta r} - \rho \nabla \left(\frac{\dot{\rho}r}{\delta r} \right) \right] d\tau^2$ $\nabla \dot{e} = -\dot{e} \ddot{e} \nabla(\Delta r) = -\dot{e} \dot{\Delta r}$ $Fdentifies: \nabla \cdot (\Delta r) = \Delta r^{2}$ $P \cdot (\Delta r) = 4\pi S^{3}(\Delta r)$ > P2V = the Ste or or - E. tr + E sr. sr - e.475/07/17/ = 41120 SEt = p. 41 53 (Sr)]dr


 $\Rightarrow \nabla^2 V = \frac{1}{C^2} \int_{a+1}^{2} \left(\frac{1}{4\pi c_0} \int_{ar}^{c} dT \right)$ - 6/20 =) V2V = = 22/2+2 - 1/20 $\Rightarrow D^2 V = -V_{\epsilon}. //$ -So V & A just depend on retarded distribution of charge & current - Beware!!! The same is not true for E and B You can't just put the refarded charge & current distribution into Coulomb's Law, Diot-Savart Law

Jefimenko's Equations $\overline{E}(\overline{r}/t) = \overline{4\pi} \int \underline{E}(\overline{r}/t) \int \Delta r$ $\frac{i(\vec{r},tr)}{cor} = \frac{\vec{J}(\vec{r},tr)}{cor} \int \frac{Jr}{r}$ $\overline{B}(\overline{r}/t) = \frac{h}{4\pi} \int \left(\left[\frac{\overline{J}(\overline{r}/tr)}{\Delta r^2} + \frac{\overline{J}(\overline{r}/tr)}{C\Delta r} \right] \right)$ X Dir) d7/

-Leading order ferms are Coulomb & Biot-Squart


- These equations are so uply no one uses them,

Example Line current 10 T = To, turnson everywhereat <math>f = 0T(H) = 0 $+ \leq 0$ I. +>0

 $f_r = f - \frac{\Delta v}{c} = f - \frac{1}{2} J s' + \frac{2}{2}$ $T(tr) = 0 \quad tr \leq 0$ To Tr > 0 $\frac{t_r}{\Rightarrow} \neq \frac{t_r}{\leftarrow \sqrt{s^2 + \frac{t'^2}{2}}}$

So $\overline{A}(\overline{r},t) = \frac{m \cdot \overline{L} \cdot 1}{2\pi \cdot \overline{t}} \int_{0}^{\sqrt{t}} \sqrt{1 \cdot \overline{L}} \sqrt{2t}$ $= \frac{\mu \cdot \pm \sigma}{2\pi} \frac{1}{2} \ln \left(\sqrt{s^2 + z^2} + \frac{1}{2} \right) \left| \frac{\sqrt{c} + \frac{1}{2}}{\sigma} \right|_{0}$ $= \frac{\mu \circ I \circ 2}{2\pi} \frac{1}{2\pi} \left(\frac{ct + \sqrt{ct} - s^2}{s} \right)$

· (-cts2 + 2 ((+))-1 · 25 · -(+2) $= -\frac{n \cdot F \cdot f}{2T} \hat{q} \cdot \frac{-cts}{(t+\sqrt{k+1})-s^2} \left(1 + \frac{cts}{\sqrt{cts^2}-1}\right)$ $= \underbrace{\begin{array}{ccc} \mu \circ \overline{F} \circ & c + q \circ \\ 2 \overline{T} \circ & \overline{\int c + 1^2 - s^2} \end{array}}_{C + 1^2 - s^2}$ +> => E>O B> Motor static solutions