Electricity and Magnetism Il: 3812

Professor Jasper Halekas
Virtual by Zoom!
MWF g:30-10:20 Lecture




Reminders

Midterm 2 will be Wednesday 4/22

The midterm will cover Chapters 9.3-11, except:
9.4.3. The frequency dependence of permittivity
10.1.4. Lorentz force law in potential form
10.2.2. Jefimenko’s equations
11.2.2-11.2.3. Radiation reaction

Equation sheet and sample midterms (with solutions)
from last year posted

Problem solving session last Friday

Review today



Midterm 2 Rules & Directions

The exam will be posted on the course web page by 9:30am. You must submit your
answers to me by e-mail by 11:30am. The exam is intended to take roughly one hour —
the extra hour is grace period to check your work, scan it, and submit it.

This exam is open book and open notes. However, it is not open internet, and it is not
open solutions manual, or open classmate. Please do not utilize solutions, online or
otherwise, to solve the problems. | trust you all not to abuse this unique situation.

Read all the questions carefully and answer every part of each question. Show your
work on all problems — partial credit may be granted for correct logic or intermediate
steps, even if your final answer is incorrect. Make sure to clearly indicate your final
answer.

Unless otherwise instructed, express your answers in terms of fundamental constants
like u, and €, rather than caIcuIatlng numerical values.

Please ask if you have any questions, includin ? clarification about the instructions,
during the exam. The class Zoom meeting will be open during the exam.

This test is designed to be gender and race neutral.




EM Plane Waves

EM Plane Waves:
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Plane Wave Fields




Complex Notation

Mathematical Representation of Polarized Light
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Linear Dielectrics

Maxwell's Equations in
Dielectric medium
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Conductors

Electromagnetic Waves in Conductors

According to Ohm's law, the plunc-wuvc solutions.
(free) current density in a -
conductor is proportional to E(z.1) = E‘.)C’”k: -mll.

the electric field:
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Boundary Conditions-> R, T
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Images show boundary conditions for case w/
no free charge or current at the boundary



Reflection & Transmission at

Oblique Incidence

Out-of-Plane (S) Polarization In-Plane (P) Polarization
Incident wave Reflected wave Incident wave Reflected wave
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Potentials
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Scalar and Vector Potentials
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Gauge Transformations

MAGNETIC VECTOR POTENTIAL 4 AND ELECTRIC VECTOR POTENTIAL V

From V.B:() = B:Vxﬁ:VX(A.-i—V(O]

A - Magnetic Vector Potential that generates the field. Not unique since 4+ V@
gives the same result (where @ is any continuous scalar)

Also '
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The Electromagnetic Field is fully defined by the Vector Potential A and

the Scalar Potential V (or by y _99 and A+ Vo -called a gauge transformation).
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Lienard-Wiechert Potentials
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E & B of Uniformly Moving Point Charge




Radiation
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Dipole Radiation
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Accelerated Point Charge

RADIATION FROM A
POINT-CHARGE

AN  ACCELERATING  POINT-
CHARGE RELEASES A FRONT
OF RADIATION IN THE SHAPE
OF A TOROID.
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Relativistic: Co-Linear

Relativistic: Perpendicular
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