

Electricity and Magnetism II: 3812

Professor Jasper Halekas Virtual by Zoom! MWF 9:30-10:20 Lecture

Einstein's Postulates

The laws of physics are the same in all inertial frames of reference.

The speed of light is the same in all inertial frames of reference.

Proper Time

- "Proper Time" = $\Delta \tau = \Delta t_o$
 - The time interval measured in a frame where the two events occur at the same spatial coordinate – i.e. the frame moving with your clock
- The time interval \Deltat measured in any other frame moving with respect to this frame will be longer

• $\Delta t = \gamma \Delta t_0$

Proper Length

- "Proper Length" = L_o
 - The length of an object measured in a frame where it is at rest
- The length L measured in any other frame moving with a velocity with respect to this frame that has a component along the length will be shorter

• $L = L_0 / \gamma$

Lorentz Transformation x' = r(x - ut)T a sux $\frac{\gamma'}{\Xi'} = \frac{\gamma}{\Xi}$ x , 5 ′ +' = x(+-Ζ Inverse; 1-01/22 $x = \delta(x' + ut)$ y = y'z = z' $E = E \left(t + \frac{ux}{c} \right)$ $X' = Const. \Rightarrow \Delta t = X \Delta t'$ t = const. => $\Delta X' = X \Delta X$ $\Rightarrow \Delta X = \Delta X / Y$ Velocity $= \frac{\delta(dx - udt)}{\delta(dt - udx(t))}$ Vx' = dx/d+/ $= \frac{dx}{dt} - u$ $= \frac{dx}{dt} - \frac{dx}{dt}$ = (Vx - u)(1 - uvx(2))But $Vy' = dy/dt' = \frac{Vy}{8(1-uvx/c)}$ etc.

Transformations

If S' is moving with speed u in the positive x direction relative to S, then the coordinates of the same event in the two frames are related by:

Lorentz transformation (relativistic) $x' = \gamma(x - ut)$ y' = yz' = z $t' = \gamma(t - \frac{u}{c^{2}}x)$

Note: This assumes (0,0,0,0) is the same event in both frames.

Interval Transformations

If S' is moving with speed u in the positive x direction relative to S, then the coordinates of the same event in the two frames are related by:

Galilean transformation (classical) $\Delta x' = \Delta x - u\Delta t$ $\Delta y' = \Delta y$ $\Delta z' = \Delta z$ $\Delta t' = \Delta t$ Lorentz transformation (relativistic) $\Delta x' = \gamma (\Delta x - u\Delta t)$ $\Delta y' = \Delta y$ $\Delta z' = \Delta z$ $\Delta t' = \gamma (\Delta t - \frac{u}{c^2}\Delta x)$

[12.3] Relativistic Electrodynamics - ELM is already Correct - By making one assumption / we can derive transformation for EB Charge is invariant Frame 00 = 0/A. E. = 0./20 between E. = 1/20 plates

Frame s $A'=A_0$, $\sigma'=Q/A_0$, $=\sigma$. E. E'= Conclusion $E_{x} = E_{x}$ $(w/\bar{u}=u\hat{x})$ E. = XEy

-9
$E_{\pm} = \gamma E_{\pm}$

Moving Point Charge $\vec{E}_{0} = \frac{q}{4\pi\epsilon_{0}} \frac{\vec{r}}{r^{2}} = \frac{q\vec{r}}{4\pi\epsilon_{0}r^{3}}$ $= \frac{2}{4\pi\omega} \left[\frac{x \hat{x} + y \hat{y} + t \hat{t}}{(x^2 + y^2 + t^2)^3/2} \right]$ - Transform to where particle maves w/v $\overline{v} = v \widehat{x}$ (i.e. $\overline{u} = -\overline{v} = -v \widehat{x}$) $E_X = E_X$ $E_{\psi}' = \delta E_{\psi}$ $E_{\psi}' = \delta E_{\psi}$ $s_{a} \vec{E} = \frac{q}{4\pi\tau} \left[\frac{x \hat{x} + y \hat{y} + \delta \hat{z} \hat{z}}{(x^{2} + y^{2} + \hat{z}^{2})^{3} \hbar} \right]$ -write in terms of xig/z' = 8 (x - v +) = 8 Rx y = y' = RyFRE -R vector from 9 to F' = (x : 1)

 $\Rightarrow \vec{E} = \frac{1}{4\pi\epsilon} \left[\frac{\gamma_{RXX} + \gamma_{RyY} + \delta_{Rz}}{(\gamma_{RXY} + \gamma_{Y}^{2} + \beta_{Z}^{2})^{1/2}} \right]$ = $\frac{\alpha}{4\pi\epsilon_0} \frac{\gamma R}{(\gamma^2 R^2 cos^2 \Theta + R^2 sin^2 \Theta)^3/2}$ $= \frac{q}{4\pi\epsilon} \frac{R}{R^3} \left[\frac{\sqrt{1-\frac{1}{c_1}}}{(\cos \frac{1}{c_1}) + \sin \frac{1}{c_1}} \right]$ $=\frac{qR}{q\pi\epsilon_R^2}\left[\frac{1-u^2/c^2}{(cos^2\Theta + (1-u^2/c^2)sin^2\Theta)^2}\right]$ $\vec{E} = \frac{q \hat{R}}{4T \epsilon R^2} \left[\frac{1 - \frac{v^2}{c^2}}{(1 - \frac{v^2}{c^2} \sin^2 \theta)^3 h} \right]$ Note $v^2 = u^2$ - Same as from Lienand - Wiechert patentials

- The magic that makes E paint along R - Loventz 6005t of X and of Ey, Ez balance exactly

to Capacitor $= \frac{Q}{\epsilon \cdot A} + \frac{Q}{\epsilon} + \frac{Q}{\epsilon}$ $\frac{1}{2} \int \frac{1}{2} \frac{$. 5 1 $A \cdot \frac{+\alpha}{-\alpha}$ In S' capacitar moves w/ V = - U $\overline{E} = \delta \overline{E} = -\frac{\delta \sigma}{2} + \frac{\delta \sigma}{2} = -\frac{\delta \sigma}{2} + \frac{\delta \sigma}{2}$

J'moving at V produces $\overline{K}' = \sigma'\overline{V} = -\sigma'\nu\hat{X} = -\sigma'\mu\hat{X}$ $\Rightarrow \vec{b}' = \mu \cdot \vec{k} = \mu \cdot \vec{\sigma} \cdot \vec{k}$ or $B_{\tilde{z}} = -\mu_0 \varepsilon_0 u E_{\tilde{y}}$ = $-\delta \mu_0 \varepsilon_0 u E_{\tilde{y}}$ Note: B'= n. s. VXE' = t. VXE' as expected