$\nabla \cdot E=\frac{\rho}{\varepsilon_{0}}$

 $\nabla \cdot B=0$$\nabla \times E=-\frac{\partial B}{\partial t}$
$\nabla \times B=\mu_{0} \varepsilon \frac{\partial E}{\partial t}+\mu_{0} \mathrm{~J}$

Electricity and Magnetism II: 3812

Professor Jasper Halekas
Virtual by Zoom!
MWF 9:30-10:20 Lecture

Lorentz Transformation of 4 -Vectors

$$
\left[\begin{array}{c}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{c}
\gamma c t-\beta \gamma x \\
-\beta \gamma c t+\gamma x \\
y \\
z
\end{array}\right] \quad \begin{aligned}
& \beta=\frac{\mathrm{v}}{\mathrm{c}} \\
& \gamma=\frac{1}{\sqrt{1-\frac{\mathrm{v}^{2}}{\mathrm{c}^{2}}}}
\end{aligned}
$$

Proper velocity
$d x \mu / d t$ is nat a 4 -vector because $d t$ is nat invariant
$d x^{\mu} / d \eta^{2}$ is a 4 -vector because $d T=$ $\sqrt{1-v^{2} / c^{2}} d t$ is an invariant

$$
\begin{aligned}
\eta^{\mu} & =d x / d \tau \\
& =\left(\begin{array}{l}
c / \sqrt{1-v^{2} / c^{2}} \\
v_{x} / \sqrt{1-v^{2} / c^{2}} \\
v_{y} / \sqrt{1-v^{2} / c^{2}} \\
v_{z} / \sqrt{1-v^{2} / c^{2}}
\end{array}\right)
\end{aligned}
$$

often written as

$$
\eta^{\mu}=\left(\begin{array}{l}
\gamma c \\
\gamma v_{x} \\
\gamma v_{y} \\
\gamma v_{z}
\end{array}\right) \quad w / \gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}}
$$

Proper Velocity \& Energy-Momentum 4-Vectors

$$
\eta^{\mu}=\frac{\partial x_{\mu}}{\partial \tau}=\gamma \frac{\partial x_{\mu}}{\partial t}=\gamma \frac{\partial}{\partial t}(c t, \vec{x})=\gamma\left(c, \frac{\partial \vec{x}}{\partial t}\right)
$$

$$
p^{\mu}=m \eta^{\mu}=\left(\frac{E}{c}, p_{x}, p_{y}, p_{z}\right)
$$

Energy-Momentum 4 -Vector

$$
\rho^{\mu}=m \eta^{\mu}=\left(\begin{array}{l}
m c / \sqrt{1-v^{2} / c^{2}} \\
m v_{x} / \sqrt{1-v^{2} / c^{2}} \\
m v_{y} / \sqrt{1-v^{2} / c^{2}} \\
m v_{z} / \sqrt{1-v^{2} / c^{2}}
\end{array}\right)
$$

is alsa a 4 -vector
$p^{\mu} p_{\mu}$ is invariant

$$
\begin{aligned}
\rho^{\mu} \rho_{\mu} & =\frac{-(m c)^{2}+\left(m v_{x}\right)^{2}+\left(m v_{p}\right)^{2}+\left(m v_{z}\right)^{2}}{1-v^{2} / c^{2}} \\
& =\frac{-m^{2} c^{2}+m^{2} v^{2}}{1-v^{2} / c^{2}} \\
& =-m^{2} c^{2}
\end{aligned}
$$

$$
-m^{2} c^{2}=\left(\frac{m \vec{v}}{\sqrt{1-v^{2} / c^{2}}}\right)^{2}-\left(\frac{m c}{\sqrt{1-v^{2} / c^{2}}}\right)^{2}
$$

I dentify

$$
\begin{aligned}
& \vec{\rho}=\frac{m \vec{v}}{\sqrt{1-v^{2} / c^{2}}} \\
& E=m c^{2} / \sqrt{1-v^{2} / c^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow-m^{2} c^{2}=\rho^{2}-(E / c)^{2} \\
& \Rightarrow E^{2}=\rho^{2} c^{2}+m^{2} c^{4}
\end{aligned}
$$

Energe - Momentum
E, $\vec{\rho}$ couserved in closed systems, just as in nonrelativistic case

Low - Vel.citp Limif

$$
\begin{aligned}
& \vec{p}=m \vec{v}\left(1+\frac{1}{2} \frac{v^{2}}{c^{2}}+\cdots \cdot\right) \\
& \sim m \vec{v} \text { if } v<c c \\
& \vec{E}=m c^{2}\left(1+\frac{1}{2} \frac{v^{2}}{c^{2}}+\cdots-\right) \\
& \sim m c^{2}+12 m v^{2} \text { if } v<c c \\
& \text { vest } \quad \text { inetic } \\
& \text { energy energ }
\end{aligned}
$$

Force and Work

$$
\begin{aligned}
& \bar{F}=d \stackrel{\rightharpoonup}{p} / d t \\
& w=\int \vec{F} \cdot d \vec{l}=E_{f}-E_{i}
\end{aligned}
$$

$w /$ all quantities relativistic
Proof:

$$
\begin{aligned}
& W=\dot{S} \vec{F} \cdot d \vec{l} \\
& =\int \frac{d \vec{p}}{d t} \cdot d \vec{l}=\int \frac{d \vec{p}}{d t} \cdot \frac{d \vec{l}}{d t} d t \\
& =\int d \vec{e} / d t \cdot \vec{v} d t \\
& =\int d / d+\left(\frac{m \vec{v}}{\sqrt{1-v^{2} / c^{2}}}\right)-\vec{v} d t \\
& =\int\left(\frac{m d \vec{v} \partial t}{\sqrt{1-\vec{v} / c^{2}}}+\frac{m \vec{v} \cdot \vec{v} c^{2} \cdot d \vec{v} / t t}{\left(1-v^{2} / c^{2}\right)^{3 / 2}}\right) \cdot \vec{v} d t \\
& =\int \frac{\left.(1-v) / c^{2}+v\right)\left(c^{2}\right) m d \vec{v} \cdot d t}{\left(1-v^{v}(22)^{3 / 2}\right.} \cdot \bar{v} \cdot d t \\
& =\int \frac{m \vec{v} \cdot \sqrt{v} \cdot d t}{\left(1-v^{2} / c^{2}\right)^{3 / 2}} d t \\
& =\int d d t\left(\frac{m c^{2}}{\sqrt{1-v^{2} / c^{2}}}\right) d t \\
& =E_{e}-E_{i}
\end{aligned}
$$

Minkowski Force
$\vec{F}=d \hat{p} d t$ is nat a 4-rector
$K^{\mu}=d \vec{p} / d \tau=M_{i n k o u s k i}$ Force
$k^{\circ}=\frac{1}{c} d E d r$
$K=d \vec{p} / d \tau=F / \sqrt{1-v^{2} / 2}$

Lorentz Farce is an ordinary force

Field Tensor

- \vec{E} and \vec{B} are clearly nat 4 -vectors
- Theyre part of a tensor

Recall $\Omega=\left(\begin{array}{cccc}\gamma & -\gamma \beta & 0 & 0 \\ -\gamma \beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
4 -vector transformation

$$
a^{\mu \prime}=\Omega_{\nu}^{\mu} a^{\nu} \text { (1 summation) }
$$

Tensor transformation

$$
\begin{aligned}
& f^{\mu \nu}=\Lambda_{\lambda}^{\mu} \Lambda_{\sigma}^{\nu} t^{\lambda \sigma}(2 \text { sums) } \\
& w / t^{\mu \nu}=\left(\begin{array}{l}
t^{00} t^{01} t^{02} t^{03} \\
t^{10} t^{11} t^{12} t^{13} \\
t^{20} t^{21} t^{22} t^{23} \\
t^{30} t^{31} t^{32} t^{33}
\end{array}\right)
\end{aligned}
$$

Field Tensor
"Field Tensor"

$$
F^{\mu \nu}=\left(\begin{array}{cccc}
0 & E_{x}, c & E_{z} / c & E_{z} / c \\
-E_{x} / C & 0 & B_{x} & -B_{y} \\
-E_{y} / C & -B_{t} & 0 & 0_{x} \\
-E_{y} / c & B_{y} & -B_{x} & 0
\end{array}\right)
$$

"Dual Tensor"

$$
\sigma^{\mu \nu}=\left(\begin{array}{cccc}
0 & B_{x} & B_{y} & B_{z} \\
-B_{x} & 0 & -E_{t / c} & E_{y} / C \\
-B_{y} & E_{y} / C & 0 & -E_{x} \\
-B_{z} & -E_{y / C} & E_{x} / C & 0
\end{array}\right)
$$

Invariants
Note: $F_{\mu \nu}$ same as $F^{\mu \nu}$ but w/ values in orth row \& column a poasite

$$
\begin{aligned}
& F^{\mu \nu} F_{\mu \nu}=\left(-E^{2} c^{2}+D^{2}\right) \cdot 2 \\
& \sigma^{\mu \nu} \sigma_{\mu \nu}=\left(-B^{2}+E^{2} / c^{2}\right) \cdot 2 \\
& \Rightarrow E^{2}-c^{2} B^{2} \quad \text { invariant }
\end{aligned}
$$

$$
\begin{aligned}
F^{\mu \nu} \sigma_{\mu \nu} & =\frac{-\vec{E}-\vec{B}}{C} \cdot 4 \\
& \Rightarrow \vec{E}-\vec{B} \quad \text { invariant }
\end{aligned}
$$

